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INTRODUCTION

The LF336 ilft fan has been involved in a continuous series of aerod}mamlc

and acoustic test programs since the hardware was first designed and manufac-

tured in 1968. The LF336 system is a 36 inch (0.914 m) diameter turbotlp lift

fan driven by the exhaust gases of the J85-5 engine. The initial configuration

was designed to the requirements of a fan-in-wlng configuration, including a

shallow inlet bellmouth and close rotor to stator spacing. This fan configura-

tion was subjected to numerous static and cross-flow testing at the facilities

of General Electric and NASA Ames Research Center.

During the mld-1960 time frame, the noise generation of aircraft propulsion

systems began to receive emphasis. The LF336 fan was an available propulsion

system that could be easily modified to include acoustic features, and conse-

quently was diverted towards applications in acoustic technology development

programs. The fan configuration was initially modified to study the effects of

rotor to stator spacing, blade to vane ratio and inner-stage suppression,

Reference I. These tests were then followed by s program for investiga-

tion of the aero-acoustic performance of multiple splitter exhaust suppressors,

Reference 2.

Technology studies, as reported in Reference 3, identified the statorless

fan as a possible lift fan propulsion concept. These preliminary studies showed

that for equal thrust, the statorless fan required about the same installation

volume of conventional fan, had about the same thrust to weight ratio, but had a

larger diameter rotor. The statorless fan concept also offers the possibility

of being an attractive low noise propulsion system. Conventional fan noise is

dominated by noise generated from rotor-stator aerodynamic interaction. Other

contributors to the overall noise are rotor noise and jet noise. The statorless

fan system tends to optimize at low pressure ratios, thus Jet noise levels would

be low. Elimination of the exit guide vane row eliminates the source of rotor-

stator interaction noise. Thus, a statorless fan system has the potential of

being a low noise propulsion component that is competitive with conventlonal

rotor-stator fans with acoustic suppression.

To provide a statorless fan research vehicle, the LF336 fan was modified to

a statorless fan configuration. This activity was initiated by General Electric

under contract to NASA Ames Research Center. The program was directed towards

the design, manufacture and test of a statorless fan system derived from the

existing LF336 fan. The configuration was assigned the LF336/E designation where

the "E" designation represents the fifth modification of the basic fan.

The program also included an investigation of the effects on noise generation

with serrated leading edges on the rotor blades. Investigations by NASA and

General Electric had indicated that significant noise reductions can be achieved

by serratlng the leading edge of rotor blades. The acoustic tests of the -

LF336/E statorless fan provided an excellent opportunity for investigations of

serrated rotor acoustic performance without the presence of a stator. The

serrated shape used in the fan configuration was developed during the cascade

program, Reference 4.



This report is a complete sun=naryof the LF336/Estatorless fan program,
including design, fabrication, acoustic studies, and auxiliary studies of
serrated leading edges andhub base pressure. The text of the report is divided
into three parts. Part I covers the prel_minary studies that establisked the
statorless fan configuration, the design modifications to the LF336fan and the
tests to determine aerodynamic, mechanical and acoustic performanceof the LF336/E
statorless fan. Part II covers that phase of the programdirected toward the
study of noise suppression characteristics of serrated leading edgeson rotor
blades. The initial cascadetests that established the serration configuration
are described. Theacoustic performanceof the fan configuration incorporating
the serratlons is then presented and comparedto the unserrated rotor acoustic
performance. Part III presents the results of an analytical and experimental
programfor investigation of hub base pressures typlcal of both the conventional
and statorless fan configurations. The results of this study is then applied to
the definition of a revised statorless fan configuration that would not experience
the low thrust performanceas experienced by the demonstrator LF336/Estatorless
fan.



PART I - STATORLESS F_q STUDY

PRELIMINARY DESI_ STUDIES

Major effort during the initial studies of statorless fans was directed

towards the selection of a lift fan cycle consistent with the following

objectives :

• The statorless fan configuratlon shall utilize LF336/A fan hardware

and components wherever possible. The LF336/A is a conventional

rotor-outlet guide vane lift fan system that is described in Reference

i and is shown in Figure I-i.

• The cycle selection shall consider typical propulsion system optimi-

zation parameters such as lift-to-weight, installation size and

transient response during thrust modulation.

• Since the fan system is intended to investigate the noise char_cLer-
° istics of the statorless lift fan concept, the cycle selection shall

..... reflect requirements for minimum overall noise generation.

Parametric Study

As a first step in the optimization procedure, a simplified parametric

study investigated effects of parameters such as hub radius raatio, tip speed,

rotor hub slope, and hub loading. The fan tip flowpath and diameter was held

identical to the LF336/A fan to permit future utilization of the existing fan

front frame, turbine carriers and scroll systems.

The study varied each of the four design parameters given above and evalua-

ting their effects on fan pressure ratio, flow, lift, power and other significant

performance parameters. For this study, the fan rotor exit axial velocity profile

was assumed to vary with a 0.2 power, N, of the fan radius. For N equal zero, the

exit velocity would be uniform and for N equal unity, the velocity profile would

vary linearly with radius. The other significant base point variables selected

for the study were:

• Tip Speed, UT ffi1050 feet per second (320 meters per second)

• Hub Loading Coefficient, C F = 0.40

• Hub Slope, AR = 0.032

The results of this study for variation of fan tip speed, hub loading and

hub slope are shown in Figure 1-2.



These data are presented in parametric form and will be used as the basis

of the optimization study to be described later. II_ever, based on this analysis

alone, certain conclusions can be drawn concerning the trends for optimization

of stator!ess llft fan propulsion systems:

The maximum thrust per unit frontal area is inherently lower for a

statorless fan as compared to the conventional rotor-outlet guide
vane system.

Statorless fan systems require high tip speeds and tip relative Mach

numbers. Tip relative Mach numbers less than unity are impractical
for fans with pressure ratios considered here.

@
The hub radius ratio for statorless fans should not exceed 0.55 _ince
very little thrust increase is obtained at higher radius ratios.

Hub slope has a strong effect on rotor hub loading. Increased hub

slope can be used to produce significant increases in fan performance. 1

Higher tip speeds may be possible for a tip turbine statorless fan

since the power requirements are lower than a conventional fan system

at the same d_ameter. The lower power requirements produce smaller
or shorter buckets in the turbine.

Comparison of Statorless and Conventional Fan Designs

The second phase of the design studies used the results of the parametric

design studies to determine performance and dimensions of statorless fan systems.

For comparison, conventional rotor-stator fan performance and dimensions were

also evaluated. The gas generator selected for this analysis was a scaled

J97-GE-i00 turbojet. This generator, with established short time VTO ratings,

is representative of an advanced gas generator system that matches the gas

flow requirements of the turbotip llft fan system. The fan turbine inlet gas

conditions used for these studies are given in Table I-l. These gas conditions

are representative of the engine three-second rating condition, comparable to

the case where maximum aircraft control or fan system design llft is required.

The fan design parameters, such as radius ratio, efficiency, and specific

flow, were selected based on a fan design tip speed of 1060 feet/sec (323 meters/

sec). The fan design parameters are shown graphically in Figure 1-3 for the

IThese design criteria were establisi_ed without concern for low hub base pres-

sures as observed during later tests of the LF336/E fan. Including the effects

of low base pressures, the criteria is significantly altered and produced trends

towards the lowest possible radius ratio. The effects of this new criteria

will be discussed later in Part III of this report.

4



range of fan pressure ratios of statorless fan systems. Similar design parum-
ters for a conventional fan system also with a design fan tip speed of 1060 feet

per second (323 meters/set) are included for comparison. The penaltles of the

statorless fan system in terms of lower efficiency, lower specific flow and hij_mr
radius ratio are shown. These differences in design parameters are traceable to
the effects of residual fan exit swirl.

Using the previously defined design parameters and fan turbine inlet gas
conditions, a family of statorless and conventional fan systems were sized,
The results of this sizing study in terms of fan tip diameter and ideal thrust

are also shown in Figure 1-3. Comparing the two fan systems on an equal thrust
basis at the same level of gas generator energy, the data indicates that a
statorless fan with a 1.25 pressure ratio will develop the same thrust as •

conventional fan with about a 1.33 pressure ratio. The difference in fan

pressure ratios is required to compensate for the lower fan efficiency of the
statorless system. A comparison of fan size shows the attendant change in
diameter from 62 to 52 inches (1.57 to 1.32 meters). This increase in fen size

is the penalty required for reduced fan thickness and possibly equal or reduced
fan noise generation. Such a comparison of noise levels will be made in a later
section of the report, based on actual noise measurement of both the statorless

and conventional turbotlp lift fan systems,

Optimization Study

The optimization study performed to select a statorless fan cycle was based

on the previously described parametric data. The study was directed towards
optimization of the fan system with respect to the following parameters:

# System, fan plus gas generator, thrust-to-weight ratio.

• System thrust per unit frontal area.

• Lift unit transient response during control thrust changes.

• Fan tip speed limitations as established by the onset of
multiple pure tone noise generation.

For this section of the study, two of the statorless design variables
previously discussed were held constant. The hub loading parameter, CF, was
fixed at a level of 0.40, consistent with accepted moderate aerodynamic

design risk, and the hub slope was also selected at a value of 0.032. The
primary variables remaining were then fan tip speed, fan radius ratio and

fan design pressure ratio.

System Thrust-to-Weight

The effects of statorless fan design variables such as tip speed and
radius ratio were factored into an analysis of system thrust-to-weight. Lack-

ing a detailed weight analysis, certain assumptions were made to determine the
weight of the components for this study:



Fan weight was estimated in two ways. One method assumed the lift

unit would maintain constant lift-to-weight for the range of tip

speeds investigated. The other method assumed a constant lift unit

weight for a given size as established by a 20:1 lift-to-weight ratio

for the base point configuration of 1060 feet per second (823 meters/

sec) tip speed and 1.25 pressure ratio. The latter case is probably
the more accurate estimation method.

An allowance of 35 percent of the fan weight was included for

installation effects such as closures, louvers and mounting hard-
ware.

The gas generator weight was estimated based on the energy required

to operate the fan unit. Tile technology level of the YJ97-c_-I00

engine was used for this case where the engine weight to power ratio

developed in the fan turbine is 0.i0 Ib/HP (.060 kg/kW).

• A gas generator installation factor of 20 percent was assumed.

The total fan thrust, including the turbine exhaust flow, was

assumed 15 percent higher than the fan only thrust as given in the

parametric study data.

The variation of system lift-to-weight obtained using the above assump-

tions is given in Figure 1-4. The t_o radically different cases of fan unit

weight indicate the same trends of higher thrust-to-weight for lower pressure

ratio and higher tip speeds. The effects of tip speed seem to be less pronounced

in the low pressure ratio regions. At high pressure ratios, a higher tip speed

is required to improve tile fan efficiency and total thrust.

Thrust Per Unit Frontal Area

Overall planform area, at a given thrust level is signiffcant parameter that

is related to ease of installing a lift unit in an aircraft system. The fan in-

stallation planform area, except for allowances for scroll geometry, is directly

related to the fan thrust per unit area. This parameter was calculated from the

parametric data and is shown in Figure 1-4. Again, an allowance of 15 percent
residual turbine thrust is included in these data.

These data indicate a desire to select high tip speeds for maximum disk

loading. However, at tip speeds between 950 and 1150 feet per second (290 and

350 meters/sec), there is very little to gain by going to pressure ratios above
1.2 to 1.25.

Lift Unit Response

Another parameter included in the optimization study is the ability of the

lift unit to respond rapidly to changes of energy as required by the aircraft

6
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attitude control system. This parameter is usually presented as a time constant

for a step change of rotor input energy. The general expression of speed time

constant is:

= (2_/60) (Jo NDp) (TDp) (K + i)

where i

Jo = rotor polar moment of inertia

NDp = design point RPM

TDp = design point turbine torque

K = ratio of locked rotor torque to design point torque

The statorless fan parametric data was used to evaluate the rotor turblne

torque at the design point speed. The fan size was obtained by scaling all of

the data to a i0,000 pound (44,500 N) lift level with a 15 percent allowance

for turbine residual thrust. In addition, a "K" value of 1.8 was assumed based

on typical values for tip turbine designs. The rotor inertia levels w_re

evaluated based on an empirical correlation of the inertias of previously

designed advanced lift fan rotor systems. The empirical correlation used for

this analysis was as follows:

(DFT) 4. IJo = 0.027 DFT in feet

4.1
Jo = 0.000207 (DFT) - - - DFT in meters

where

DFT = fan tip diameter as obtained from the scaled parametric data.

The results of the optimization study are shown in Figure 1-4. Time

response is presented as a function of fan pressure ratio and tip speed. The

results show a desire to maintain hi_ fan pressure ratios with the lowest

possible tip speed.

Present V/STOL handling criteria specify the need of system thrust

response time constants of less than 0.2 seconds. This then implies that a

reasonable maximum fan time constant would be in the order of 0.3 second.

For this level of response, some form of lead compensation or thrust spoiling

method will be required to achieve an overall time constant of 0.2 second or

less.

Noise Generation

The statorless fan type of propulsion unit will be required to meet low

noise generation criteria and certain restrictions must be included in the design

selection to minimize noise generation. One important source of increased noise
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level is onset of multiple pure tones at high tip speeds. Correlation of existing

data has shown that a rapid rise in noise generation occurs when the tip rotational

speed exceeds a Mach number of one. This establishes a limit on the rotational tip

speed of about 1050 to ii00 feet per second (320 to 335 meters per sec). Further

reductions of fan tip speed are desirable for further reductions of rotor noise

generation. In addition, a limit on the jet velocity generated noise also exists.

For this study, a typical fan pressure ratio of 1.25 has been selected as the

maximum tolerable jet noise condition.

Design Point Selection

The two major parameters optimized during selection of the statorless fan

cycle were system thrust-to-weight and disk loading. The fan design variables

were fan tip speed and fan pressure ratio. Fan radius ratio is then a dependent

variable as established by the selected hub loading, the fan pressure ratio and

the design tip speed. Constraints such as fan response, multiple pure tone

noise generation and jet noise floor also influenced the design selection.

FigUre I-8 shows the boundaries estnblished by these criteria, and indicates

that the optimum statorless lift fan configuration can be selected which will

satisfy both the maximum thrust-to-weight and disk loading criteria. The

selected design point parameters are:

Pressure Ratio = 1.25

Tip Speed z 1060 feet per second (323 meters per second)
Radius Ratio = 0.57

Hub Loading = 0.4

Hub Slope - 0.064

Profile Factor, N = 0.2

A hub slope of 0.064, as compared to 0.032, is a desirable feature

because of increased performance and a lower risk aerodynamic design. The

trends presented in the optimization studies apply equally as well for the

low and high slope hubs; only the overall levels of thrust-to-weight and disk

loading will improve.

LF336 Design Considerations

The previous study has shown that the optimum cycle for a statorless fan

system should have a design pressure ratio of 1.25 with a tip speed of 1060

ft/sec (323 m/sec). The LF366 statorless fan system is to be derived from the

existing LF336/A system. The fan design shall utilize existing hardware

wherever possible. Since existing tip turbine hardware will be used in the

demonstrator LF336/E fan, the fan tip speed will be limited to 89.6 percent

of design. The fan system at this speed will develop about 80 percent of the

design thrust level. This level of thrust is representative of nominal rated

operation of llft fans, as presently defined for advanced remote and integral

lift systems. The nominal or 80 percent llft level is also established as the



"Noise Rating" point. Operation to the maximumor i00 percent level represents
the maximumcontrol or maneuvercondition where the 25 percent excess lift is
used to generate aircraft control moments,and thus is basically a short-time
operating point. The statorless fan configuration derived through modification
of the LF336/A fan was identified as the LF336/Elift fan system.

The design approach used in the LF336/E fan systemwas then established
as follows:

I Perform and optimize the detailed aerodynamic design at the 1.25

pressure ratio, 1060 ft/sec (323 m/sec) design point.

Design the rotor system mechanically for operation at the design

point. The integrated aero-mechanical design thus reflects any

compromise in design dictated by this higher design rotational

speed.

The fan system can then be tested throughout the complete speed

range up to the nominal or 80 percent of design thrust level. This

will provide both aerodynamic and acoustic performance excluding

the 80 to i00 percent thrust range of short time duration reserved

for aircraft attitude control.
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FAN DESIGN

The design of the statorless fan configuration was derived based on

maximum utilization of components from the already developed and tested

LF336/A fan configuration. These restraints established design parameters

such as fan tip diameter and tip slope. The existing turbine design was also

retained to permit use of the fan scroll and tip turbine carrier assemblies.

The rotor frame, hub and bearing configurations were incorporated into the

statorless fan design. Based on these criteria, the components requiring

redesign and modification for the LF336/E fan were limited to the rotor blading,

the rotor disk and the inlet bulletnose flowpath.

Aerodynamic

The considerations discussed in the previous sections led to the selection

of a! fan with the aerodynamic parameters and objective design point performance

presented in Table I-II. The total pressure ratio shown is based on full recovery

of the meridional velocity component at the fan exit but no recovery of the

tangential component. The total pressure ratio based on full recovery of the

exit velocity would be 1.325. The design static pressure ratio is slightly

greater than unity because the fan flowpath convergence causes a vena-contracta

effect at the fan exit. The design static _ressure is approximately ambient

at the hub and tip of the rotor exit plane. = The fan efficiency listed is

also based on recovery of only the meridional velocity component.

The rotor inlet specific flow for this fan is not particularly high at

35.2 ib/sec ft 2 (172 kg/sec m 2) because of the rather large area convergence

across the rotor. This should help to alleviate any rotor choke problems

which may have otherwise occurred. The hub work coefficient is also rather

low and is a direct result of the selected tip speed, radius ratio and pres-

sure ratio. This would be a general characteristic of all statorless lift

fans as light loading is required to keep exit swirl losses from becoming
excessive.

For this fan, the average exit swirl angle is 27 degrees. If exit

louvers are to be used with this fan for thrust vectoring, they should be

designed to accommodate this swirl angle. Also, as this fan is throttled,

the swirl angle can be expected to increase to about 36 degrees for a i0

percent flow reduction and to about 43 degrees for a 20 percent flow reduction,

2These design criteria were later shown to be invalid during fan testing.

Effects of revised criteria will be described later in Part III of this report.
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Aerodynamic Desisn Procedure

The first step in the design was to lay out a tentative hub flowpath con-

sistent with the above objectives. The tip flowpath of the original LF336 fan

was retained through the rotor. Downstream of the rotor free streamline bound-

aries were assumed for both hub and tip. The General Electric Wing Fan Flow

computer program (WFF) was then used to determine an axisymmetric solution to

the compressible fluid flow within this flowpath. This program is capable of

handling flows with or without blade rows, variable total pressure and entropy

profiles and leaned and/or swept blade rows. The theory is a modification and

extension of the equations derived in Reference 5 by Katsanis. Program output

consists primarily of the complete definition of the axisymmetric flowfield from

which blade loading parameters and flowpath velocity distributions can be deter-
mined.

A number of hub flowpaths and downstream free streamline boundaries were

tried before a satisfactory design was achleved while at the same time satis-

fying conditions of constant static pressure along the downstream free jet

boundaries. The final flowpath arrived at by this procedure is shown in

Figure I-6. Velocity diagrams at the blade leading and trailing edges were

determined from this axisymmetric flowfield.

The next step in the design procedure was to define a detailed blade

geometry which would actually produce these desired velocity diagrams at

good efficiency and simultaneously meet mechanical requirements of flexural

and torsional stiffness, and cross-sectional area distribution. Airfoil

coordinates were generated in the following manner. First, an airfoil was

constructed in a plane using a multiple circular arc mean line, the cylin-

drical projections of the leading and trailing edge air angles on a stream-

line, specified chord, maximum thickness, incidence angle, deviation angle,

edge thickness and a quarter sine wave thickness distribution. This planar

section was then positioned so that it was normal to a radial line from the

fan axis through its mid-chord point. The planar section was then projected

back to the stream surface by rays parallel to this radial line. Stream surface

coordinates were thus generated. Finally, these three-dimensional sections

were located on a stacking axis and their coordinates interpolated to obtain

cylindrical section coordinates at desired radii for mechanical analysis and

manufacturing drawings.

As illustrated in Figure I-7, the meanline is composed of two circular arcs

and its shape is controlled by the leading and trailing edge angles along

with two other parameters called arc-length-ratio and arc-radius-ratio. Arc-

length-ratio is the ratio of the arc length of the leading meanline arc to the

total meanline length. Arc-radlus-ratio is the ratio of the radius of curva-

ture of the trailing meanline arc to the radius of curvature of the leading

meanline arc. By varying incidence and these ratios, the chordwise camber

distribution may be varied to obtain the desired choke margin.

Chord, maximum thickness and edge thickness are strongly influenced by

mechanical requirements of flexural and torsional stiffness and cross-

sectional area distributions. A thickening of the blade tip area is required
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to obtain a satisfactory blend into the hucket carrier attachment tang. In
general, a maximumthickness and edge thicknesses are specified as a percent
of chord at each streamline and then the chord kept to a minimumconsistent
with mechanical requirements. This resulted in blade solidities which were
judged adequate for the aerodynamicloading.

Tile stream function at the blade leading and trailing edges is shownin
Figure I-8 (c). In the figure, various nerodynamlc parameters are

plotted against stream function. Figure I-8 (d) shows pressure ratio distributions

at the fan exit. The upper curve shows the absolute total pressure ratio, the

intermediate curve shows the total pressure ratio based on meridional velocity,

and the lower curve shows the static pressure ratio. The total pressure ratio

curves drop off at the hub and tip because of the higher rotor blade loss co-

efficients assumed for these areas. The static pressure is somewhat above ambient

over the mid-portion of the annulus as a result of the general convergence of the

flowpath and the resultant streamline curvatures at the hub and tip, shown in

Figure I-6.

Figure 1-8 (a) shows respectively the rotor blade D-factor and static pressure

rise coefficients. Two forms of the static pressure rise coefficient are used.

The first gives the more common form defined as:

PS2 - PSI

Cp =
PTR PSI

and is denoted by the solid line in the figure. The second denoted by the

broken line and defined

, ¥

Cp = (PS2/kSI) -i

TTR/TsI -i

may be thought of as a temperature derived pressure rise coefficient and may

be a better measure of the blade loading since it accounts for the pumping

energy imparted to the flow due to streamline radius changes.

Figure 1-8 (e) gives the rotor inlet and exit air angles for design fan

operation. Blade leading and trailing edge angles are also shown and indicate

the levels of blade incidence and deviation angles included in the design.

For these flow angles, the blade inlet Mach numbers are as shown in Figure I-8 (b).

Blade Geometry and Loading

The final geometric parameters for the rotor blading, as derived through

the integrated aerodynamic-mechanical design, is presented in Figure 1-9. The
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blading is based on a constant chord of 3 inches (7.6 cm) and a leading and

trailing edge thickness of 0.75 percent of chord. The camber, thickness and

stagger distributions meet both the aerodynamic design requirements and the

mechanical design criteria.

Figure I-9 also describes the mean camber line curvature distribution in terms

of the arc-radius-ratio and the arc-length ratio. These ratios are defined in

Figure 1-18. The arc radius ratio is unity from the hub to a mean radius of

about 15.5 inches (39.4 cm) indicating that this portion of the blade has a

single circular arc camber line. From a radius of 15.5 inches (39.4 cm) out

to the tip, the arc-radius-ratio is less than unity indicating that the mean

camber line radius of curvature is larger for the forward portion of the

blade than for the aft portion. The arc-length-ratio was selected for this

portion of the blade to keep the juncture point between the forward and aft

arcs of the mean camber line Just inside the "covered" portion of the blade

section.
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Leading Edge Modifications

As part of the acoustic testing to be conducted on the fan, the effects

of rotor leading edge serrations were to be evaluated. It was felt for both

aerodynamic and acoustic reasons that the serrations should be added by

extending the leading edge of the aerodynamic profile rather than by

cutting into the basic profile. Accordingly, the blades was initially manu-

factured with 1/4 inch long (0.64 cm) leading edge extension over the full

blade span into which the serration geometries may be cut.

The leading edge extension was defined by first locating a 4-to-i

ellipse on a straight line tangent to the mean line leading edge of the basic

profile. The leading edge of this ellipse was 1/4 inch (0.64 cm) ahead of the

original leading edge and had a thickness of 0.75 percent of the original 3

inch (7.62 cm) chord. This ellipse was then faired smoothly into the basic

airfoil with only slight thickening of the shape at the original leading edge

location. This resulted in a very smooth blend for the convex side of the

profile but somewhat abrupt curvature change on the concave side. This pro-

cedure then resulted in serrations which had essentially the same incidence

angles as the basic profile, Figure I-9 shows a typical section of the ex-

tended leading edge.

Mechanical

The LF336/E rotor is similar to the LF336/A, with changes made only as

necessary to accommodate the new set of blades of the LF336/E. The new rotor

parts were designed for continuous operation at 6742 revolutions per minute

(I00 percent speed). DII stresses and margins of safety were calculated at a

six percent overspeed (7152 rpm) to provide design margin. A cross-section of

the LF336/E rotor system is shown in Figure I-i0.
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The rotor maximumspeedis limited by the present carrier assemblies to
the LF336/Adesign speedof 6050 rpm. Future operation to the i00 percen_
design speedmaybe possible but would require detailed carrier analysis and
a test program for verification. Newcarriers were not included in the
programbecauseof the cost and time required for carrier design and manu-
facture. This step could be considered if the initial testing of the LF336/E
at 6050rpm is encouraging enoughto warrant testing to the design speed.

The following rotor componentsare new:

Blades
Disk
Blade Retainer Plates
Tip TangBolts
Tip TangNuts

The following rotor componentsare unchanged:

Blade Retainer Plate Bolts
Blade Retainer Plate Nuts
TorqueLinks
Torque Link Bolts
2urbine Bucket Carrier Assemblies
All SumpHardware
BalanceWashers

Twostatic parts have been added:

HubOverlay
Turbine Skirt

A removablehub adaptor has been addedto the inlet hub to provide the
desired inlet flowpath contour. A cylindrical skirt has been addedat th£
exhaust to protect the scroll insulation blankets from turbine exhaust
impingement.

Blades

The blade design is similar to the LF336/Adesign, but includes changes
to reflect the newairfoil geometryand to permit operation at the design
speedof 6742 rpm. Blade tip tang similarity wasmaintained to permit the
use of existing LF336/Aturbine bucket carrier assemblies. Stresses were
calculated for three sets of airfoil tip boundary conditions, at the six
percent overspeedcondition during steady-state (no vibration) and vibration,
either in-phase or out-of-phase with the adjacent blade in the samecarrier.
Changingthe tip boundary conditions had little effect on the stress levels.
The airfoil stresses at the design tip speedand at the six percent overspeed
condition are summarizedin Figurel-ll (a). The resultant spanwise stresses were
calculated at four locations, the leading and trailing edgesand the convex
and concavesurfaces, and are the algebraic sumsof the centrifugal stress,
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bending stresses about the major and minor axes, and the resultant spanwise
stress due to shear. Theprincipal stresses were calculated at the convex and
concavesurfaces by combining the resultant spanwise stresses and shear
stresses. The Mises Henckystresses were calculated at the convex and con-
cave surfaces, and are the principal stresses combinedaccording to the Von-
Mises Henckytheory of failure. The maximumcombinedstress is about 85,000
psi (586,000 kN/mm2) at the six percent overspeed condition. Figure I-ii (b) com-
pares this stress level, including an assumedalternating stress criterion of
20,000 psi (138,000 kN/mm2),with the allowable properties for Inconel 718,

the selected blade material. This comparison shows an alternating stress

margin of safety of 0.45, which is adequate for this blade material.

The mechanical analysis of the blade tip tang attachment produced the

results summarized in Figure 1-12 (a). The maximum calculated stress of 94,200 psi

(650,000 kN/mm 2) and an assumed vibratory stress level of 20,000 psi (138,000

kN/mm 2) yield an adequate 0.175 margin of safety for the Inconel 718 blade

material at a metal temperature of 600 degrees Fahrenheit (589 ° K).

Blade and disk dovetail stresses are given in Figure 1-12 (b). The maximum

stresses, found by combining the tensile and shear stresses at the dovetail

fillets, are 90,300 psi (623,000 kN/mm 2) for the blade dovetail and 82,900

psi (572,000 kN/mm2) for the disk dovetail.

Figure 1-13 shows the stress range diagrams for the blade and disk dove-

tails. Stresses are given for six locations on the cross-section of the

dovetail. The alternating stress levels for the dovetail were calculated by

scaling the airfoil root loads to the equivalent blade vibratory stress level

required for failure. Using this design criterion for dovetail vibratory

loads insures that the dovetail vibratory strength exceeds the airfoil vibra-

tory strength. Adequate margins of safety exist in both the airfoil and disk

dovetail areas.

Disk

The disk is a solid machined forging made from D6AC (AMS6431), a high

strength, low-temperature iron-base alloy. The bore section of the disk is

identical to the LF336/A disk to permit the use of existing sump hardware.

The disk is thicker than the LF336/A disk to avoid a 4-per-revolution excita-

_ tion of the 4-wave coupled blade-dlsk natural frequency in the operating

_'_p_ed range.

_ Disk stresses are given in Figure 1-14. The peak stress is about 60,000

p Si_(_i4,000 _N/mm 2) and occurs near the hub. The low disk stresses exist

because the disk geometry was established by the coupled blade-disk vibration

criterion rather than the absolute stress levels.

I
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_chanical Vibration

The vibration characteristics of the LF336/E system were evaluated with

respect to blade flutter, induced natural blade mode vibrations and induced

coupled blade-disk vibrations. Past lift fan experi=nce has shown that fan

blades will be flutter-free when the flutter parameter (the inverse Strouhal

number) is less than 1.5. The LF336/E flutter parameter at I00 percent design

speed is 0.90. This low value is the result of the short stiff blades charac-

teristic of this statorless fan system.

Blade torsional and flexural vibration modes are compared to possible

excitation sources in Figure 1-15. The blade natural frequencies at all speeds

are well above the most probable excitation sources, the two and four cycles
per revolution frequencies.

The characteristics of the coupled blade-disk vibrations are also shown in

Figure 1-15. At the present limiting speed of 6050 revolutions per minute,

a sufficient frequency margin exists for the three principal modes shown. At

the design tip speed, the margin between the four-wave mode and the four-per-

revolution excitation is about 4.7 percent. This level of frequency margin is

adequate since past lift fan experience has shown that the front frame four-

per-revolution excitation is a weak stimulus for the four-wave mode of
vibration.

Estimated Performance

The LF336/E statorless fan system was designed to operate using a J85-5

turbojet as the gas generator supplying the fan tip turbine. The complete

turbine and ducting system was the same system designed for the LF336/A

lift fan. Performance for the LF336/E lift fan installed in this test set-up

was estimated and will be presented in the following discussion.

Fan and Turbine Maps

l_e turbine used with the LF336/E lift fan system is the same turbine as

designed for the LF336/A. A summary of the significant turbine design parameters

is given in Table l-III. The turbine design point for the original design was

sized for the exhaust gas conditions of the J85-5 engine and designed to match

the energy requirements of the LF336/A fan system. For operation with the LF336/E

statorless fan system, the energy requirements will be much lower than the orlglnel

design point.

Operation of the turbine at this off-design condition required a complete

turbine map representation for estimation of performance. Figure 1-16 presents

the map generated for this analysis and identifies the original design point.

_is map representation was used for performance estimation of the LF336/E stato_-

less lift fan system.
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The fan map representation for the LF336/E statorless fan is shown in Figure

1-17. The predicted map was generated using analytlcal-empirical techniques based

on test results of previous General Electric fans, with the procedures modified

to represent the statorless fan design. The fan design point at a fan pressure

ratio of 1.25 and an adiabatic efficiency of 73.7 percent is identified on the

map.

Performance

Performance of the LF336/E lift fan system was estimated using the gas dis-

charge of the dry J85-5 turbojet engine. The performance of the engine was cal-

culated using the performance deck provided for the basic J85-5 reheat engine

with modification to reflect the configuration used to operate the LF336/E fan

system.

Estimated sea level ststic standard day performance for the LF336/E fan is

shown in Figure 1-18. Performance is presented for the b_slc fan without exit

louvers. The design speed of 1060 feet per second (923 m/sec) can be achieved

at an engine power level equivalent to about 97.5 percent. The limiting speed,

as established by the existing LF336 turbine hardware, will require an engine

speed of about 94.0 percent. Table I-IV lists the significant fan and engine

parameters for operation at the maximum test speed of 950 feet per second

(290 m/sec) and the design speed.
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FAN AERO-MECHANICAL PERFORMANCE

Tests of the LF336/E fan system were conducted at the facilities of the

Ceneral Electric Flight Test Center, Edwards Air Force Base, California, and

covered the period between October 6, 1972 and January 18, 1973. The test

program required about 8 1/2 hours of fan operation. Following completion

of the static tests, the fan system was shipped to NASA for continued static

testing and cross-flow tests in the 40 by 80 foot windtunnel. The NASA test

program also included an investigation of the LF336/E rotor with leading edge

serrations.

Test Set-Up

The test propulsion system was composed of the LF336/E statorless fan,

the J85-5 engine and interconnecting ducting between the engine discharge

and the fan scroll inlet. The propulsion system was installed in a test stand

as shown in Figure 1-19. This test stand provides for mounting of the fan and

engine system wlth the fan inlet oriented in a vertical plane. A flat plane

surface is provided to extend the fan inlet bellmouth and to simulate a wing

upper surface. A clean unobstructed fan inlet flowpath was thus provided in

this test arrangement. The J85-5 engine, mounted with its inlet facing

perpendicular to the fan inlet plane, employs a test bellmouth which is

adaptable to installation of an engine inlet sound suppressor. Figure 1-20

shows a photograph of the fan inlet and exhaust systems.

The initial test program was conducted in the facilities of the General

Electric Flight Test Center, Edwards Air Force Base, California. The test

facility is specifically intended for acoustic tests of engine systems and

components, and includes an underground control room and test sites which

are free of unnecessary obstructions which would influence acoustic measure-

ments. A support frame, including overall thrust measurement capabilities,

was provided for mounting the LF336/E test stand. A photograph of the test

facility with the LF336/E installed is shown in Figure 1-21. The test set-up

shown includes the J85 acoustic suppressor which was installed during the

acoustic test program.

Test Scope

The purpose of the test program was to determine the aerodynamic and

mechanical performance of the LF336/E statorless lift fan. The test set-up

consisted of the LF336/E fan with a clean fan inlet. The J85-5 engine was

installed without the acoustic inlet suppressor.

Initial plans included three test phases to verify mechanical integrity

of the fan, develop a fan operating map, and record acoustic performance of

the fan system. During the initial testing, a fan thrust deficiency, asso-

ciated with low hub base pressures, was observed. Hub base pressure below
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ambient pressure were anticipated and included in initial performanceesti-
mates, but the base pressure observedduring the initial tests of the stator-
less fan systemwere muchlower than anticipated. Later in the overall
program, tests of a scale model were performed to further define the hub base
pressure problems. Thesetests will be described in Part III of this report.

The existence of the low base pressure and its associated low level of
fan thrust required a redirection of the initial test effort towards an
investigation of methodsto improve the level of fan performance. During
these initial tests, four basic fan modifications were tested. The results
of these tests indicated that large improvementsin the hub base pressure
levels were not possible through simple modification of the existing lift fan
configurations. The testing showedthat the low levels of base pressure are
inherent in fan exhaust flowfields in the presence of the exit swirl of
a statorless fan system. With the realization that the fan performance
deficiency due to the low base pressure could not be improved short of a
complete fan redesign, the test programwas continued to include verification
of systemmechanical performanceand acoustic testing of two fan configurations.

The complete test programis summarizedin the test run summarygiven in
Table I-V. Test Runs1 through 4 were the initial tests of fan mechanical
integrity which also identified the fan performanceproblem. Runs5 through 12
covered the test interval directed towards the explanatory investigations of
possible modifications to improve fan performance. The three most siginifcant
modifio-tions investigated during these tests were:

Venting of the Hub Base and Installation of a Turbine Throttling Ring -

The purpose of turbine throttling ring modification was to relieve the

low fan tip static pressure allotted to an apparent ejector action between

the turbine exhaust flow and the turbine exhaust shroud or skirt. The

exhaust shroud is iden" fled in the photograph shown in Figure 1-20. The

hub base vent was provided to remove swirl from the separated flow in

the hub base region and to provide vent air which could relieve the base

suction. Figure 1-22 shows a photograph of the fan exhaust section with

these modifications installed.

Addition of Fan Turbine Exhaust Stators - A set of existing LF336/A turbine

stators was modified and installed on the fan assembly as shown in Figure

1-23. The purpose of the turbine stators was to remove the swirl in the

turbine exhaust flow which existed because of the light loading levels of

the turbine.

Installation of a Hub Base Fairing - A hub base fairing was designed and

installed on the fan system as shown by the photograph in Figure 1-24. The

hub fairing contour was designed to yield near ambient static pressures

across the flowfield in the fan exhaust plane.

At the conclusion of Runs 5 through 12, the test prograln was revised to

include a series of runs to expand the fan operating envelope to the maximum

operational speed of 6050 revolutions per minute. This exploratory testing

was accomplished during Runs 13 through 15. Testing for definition of the

fan operating map was then deleted from the test program at the conclusion
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of Run15. Developmentof a fan operating mapin the presenceof the low hub
base pressures would not provide any useful performancedata applicable to a
properly designed statorless lift fan system.

Twocomprehensiveacoustic tests were performed using the fan configura-
tion as modified only by installation of the turbine stators. During acoustic
tests of the fan system, both far field and near field acoustic measurements
were taken. Acoustic tests of the fan systemwith a clean unobstructed inlet
were performed during Runs16 and 17. A massive fan inlet acoustic suppressor
was installed for the secondacoustic tests conductedduring Run18. A photo-
graph showing the fan systemwith the fan inlet suppressor installed is shown
in Figure 1-25.

Test Results

During tests of the unmodified fan, observations of the fan exhaust flow
indicated that the turbine exhaust gases were diffusing radially outward at a
very high angle. The _ource of this condition was initially attributed to an
ejector action between_theturbine exhaust flow and the cylindrical shro,,d
which extended downstreamof the turbine exhaust. A turbine throttlin_ ring
was installed at the aft edgeof the turbine shroud to direct the turbine flow
radially inward and to relieve the tip shroud ejector action. Improvements
in the hub base pressure were also anticipated based on the expected tip flow
improvements. The results of this first fan modification showedlittle or no
improvementin fan overall performanceas indicated by thrust measurements
and flow surveys of the fan exhaust.

A secondmodification wasadded to the fan along with the turbine throttle
ring installation. This modification included a hub base vent tube which
collected fan exhaust air and reclrculated the air into the separated zone
behind the hub base. An antl-swirl vane as shownin Figure 1-23 was also in-
stalled on the vent system for removal of the rotation of the secondary flow
entrained in the hub base region.

This configuration was tested both without the fan inlet bellmouth,
Run 7, and with the bellmouth installed for measurementof total fan airflow,
Run 8. The fan performanceobtained during these two test runs is presented
in Figure 1-26.

The thrust data shownin Figure 1-26 compares test results with and without

the fan inlet bellmouth installed. The agreement of the two sets of data is

important because fan tests with the bellmouth require a thrust correction for

inlet momentum forces. The inlet bellmouth, because of its large size and

weight, was not mounted on the active portion of the thrust frame; instead,

it was secured to the ground and attached to the fan inlet through a rubber

sllp seal located between the bellmouth and the cylindrical transition section.

Figure 1-25 shows the location of the transition section. This type of instal-

lation causes a thrust error because of the inlet momentum at the plane of the

sllp seal. A correction for this momentum term was calculated based on the

bellmouth wall static pressure and the thrust was increased by the amount of

this correction.
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The fan inlet airflow, obtained from pressure measurementsin the inlet
bellmouth, is shownin Figure 1-26. The measured data verifies an expected

result, in that the fan airflow is above the design level. High fan airflow

is anticipated because of the below ambient static pressures throughout most

of the fan exhaust stream. The gas horsepower required to achieve a level of

fan speed, as shown in the figure, indicates a slightly higher-than-design

power level. This change from the unmodified fan power requirements could be

caused by a change in fan exit static pressure or a change in turbine opera-

tion due to the throttling effect of the turbine ring. Figure 1-27 presents

typical fan exhaust flow parameters for this test configuration modified by

installation of the turbine throttle ring and hub base venting system.

iP-

Fan System with Turbine Stators

The fan configuration was modified as shown in Figure 1-23 by installation

of the LF336/A turbine stators for removal of the turbine exit swirl. The

performance of this stator row was expected to be poor because of the high

blade incidence angles. The turbine exit swirl for the LF336/E is about 40 to

45 degrees in the direction of fan rotation compared to a stator design angle

of 24 degrees. At an incidence of 15 to 20 degrees above design, the perfor-

mance of the turbine stator would certainly be poor.

The fan configuration with the turbine stators installed was tested

during Run ii and during the acoustic runs to design mechanical speed. The

only diffference in the test arrangement was the installation of the inlet

bellmouth for Run ii.

Figure 1-28 presents the measured overall fan performance for this con-

figuration. Addition of the turbine stators produced a fan airflow reduction

from the previous configurations. Throughout the test range, the measured

airflow was only slightly above the design value. A sizable improvement in

overall fan thrust was also observed. This thrust improvement could have

occurred in both the fan and turbine exhaust streams. The major part of the

improvement apparently occurred in the turbine exhaust thrust because of the

redirection of the exhaust flow into a nearly axial direction.

Figure 1-29 shows the fan exhaust flow profiles as measured for this con-

figuration. The exhaust flow survey was taken Just downstream of the turbine
stator row or about 3.8 inches (9.65 cm) downstream of the rotor blade trailing

edges. At this location, the diameter of the flowpath as established by the
turbine stators was 37.70 inches (0,958 m). A comparison of these pressure

measurements with previous similar data from the other configurations, shows

only minor adjustments in the level of the fan exit static pressure. This

comparison partially Justifies the conclusion that the major thrust improvement

was in the turbine exhaust flow.
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Fan with Hub Afterbody

A hub afterbody was designed to provide a flowpath in the fan exhaust

which would remove the large region of separated flow in the hub base area.

The fan was modified by installation of the afterbody without removal of the

fan turbine stators as shown in Figure 1-24.

Fan overall performance, thrust, airflow and horsepower characteristics

are shown in Figure 1-30. Comparison of test results before and after instal-

lation of the hub afterbody show no significant improvements in fan performance.

A small reduction in fan inlet airflow can be observed, and is indicative of

some improvement or increase in the static pressure levels in the fan exhaust

stream. Figure 1-31 presents exit flow data for this configuration. The static

pressure profile shows an increase in level over previous configuration data,

but is still below ambient throughout the complete flowfield.

_es[s el the LF336/E to Design Mechanical Speed

The series of tests conducted to investigate the low hub base pressure

and the associated performance deficiency indicated that the LF336/E fan would

require a redesign in order to realize any significant improvement in overall

thrust performance. Based on the exploratory test results, the fan with only

turbine stators installed was selected for the planned acoustic tests. During

all of the previous tests, the maximum fan speed was 5300 revolutions per

minute. Prior to the acoustic testing, the mechanical integrity of the fan

had to be determined to the full speed limit. The configuration used for these

tests included the turbine exit stators and the fan inlet bellmouth for

measurement of fan total airflow.

Three test runs were required to extend the range of fan operation.

During these runs, fan performance data were recorded to compare with and expand

the range of performance observed during the previous Test Run Ii. The measured

overall fan performance is presented in Figure 1-32 and compared with similar

performance data from tests of Run 11. The extension of the data to about a

corrected speed of 6100 revolutions per minute followed the performance trends

observed during lower speed operation.

Analysis of Data

The early tests of the LF336/E turbotlp fan system identified a performance

deficiency associated with excessively low hub base pressures as established by

the swirling exhaust flowfield. Numerous tests were conducted, without success,

to improve the level of hub base pressure. Even with this performance problem,

several significant data analysis procedures were performed which provided

valuable fan performance data. This section of the report will present the

results of some of the analyses performed using the program test data.
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Fan Performance Using Probe Data

The traverse of the fan exhaust flow provided radial distributions of

flow angles, total and static pressures and gas total temperature. These

profiles served as input for evaluation of overall fan performance through

integration of the fan exhaust flow parameters. The integration procedures

determined the following fan performance parameters:

Q

Fan exhaust airflow

Fan rotor pressure ratio, absolute and axial

Fan stream total thrust

Fan stream total enezgy or power

The integrated fan performance was determined for each of the following

test configurations.

Unmodified fan

Fan with hub base vent and turbine throttle ring installed

Fan with hub afterbody and turbine stators installed

Clean inlet fan with turbine stators installed (acoustic tests)

Fan with inlet suppressor and turbine stators installed (acoustic

tests)

A comparison of fan performance at a fan speed of 5000 revolutions per

minute is possible by extrapolation of some of the early test data. The

tabulation of the fan performance parameters and cycle performance estimates

is given in Table I-VI. Comparison of these measurements and the estimated

performance shows almost equal performance for all configurations.

Comparison of Rotor Profiles with Design Predictions

The fan system was tested with a hub afterbody installed to provide

design discharge pressure levels in the fan exhaust. The following discussion

will compare the results of these tests with similar analytical predicted

performance. In addition, comparisons will be made to show the changes in

performance due to removal of the hub afterbody.

Before the test results can be compared with analysis, a method is

required to correct the data to equivalent operating speeds. Performance of

low pressure ratio fan systems has previously been normalized for effects of

fan speed using a pressure coefficient defined as follows:

Hp = (P-Po)/(PoUT2/2)

The measured fan exit total and static pressure distributions for tests

with the hub afterbody installed were converted into this pressure coefficient.

The test results are compared with predicted pressure distributions in Figure

1-33. The two sets of data represent performance at the same axial location

downstream of the rotor centerline plane, about 3.8 inches (9.7 cm), where

the traverse plane was located. The measured flow angles, pitch and yaw, for

23



the same test point _re also shown in Figure 1-33. Predicted flow angles are also
presented.

Comparison of the test results and the analytical predictions shows

the following significant differences in performance:

The fan exit stream static pressure levels agree with the analytical

predictions near the hub afterbody surface. Near the fan tip, the

measured pressure levels were below ambient pressure where the

analysis assumed an ambient pressure boundary. This below ambient

pressure is probably caused by the influence of the blunt base

located between the fan and turbine exhaust streams.

The rotor total pressure rise in the vicinity of the fan tip is

considerably lower than predicted pressure rise. This difference

is primarily the effect of tip seal leakage interaction with rotor

performance.

The measured pitch flow angles indicate a flow direction which is

slightly more axial than the analytical prediction.

The fan exit swirl angles are less than the predicted angles. The

discrepancies are largest at the fan tip and almost vanish near the

fan hub. This difference is the direct result of the low tip static

pressure levels. Low exit pressures increase the fan airflow with

an attendant reduction in the fan exit swirl angles.

In summary, a comparison of test and analytical performance shows some

major discrepancies in predicted fan performance, particularly in the vicintiy

of the fan tip. These discrepancies appear to occur because of an inadequate

representation of tip seal leakage in the design analysis and the inaccuracy

of the boundary pressure assumption. The test results indicate that the low

base pressure on the blunt base separating the fan and turbine may be a factor

in establishing the level of fan exit static pressure.

Figure 1-34 compares measured fan flow parameters both with and

without the hub afterbody installed. The comparison shows the expected
trends in performance; for example:

The fan exit static pressure is much lower without the hub afterbody
installed.

The pitch flow angles are radially inward throughout the complete

flowfield. This radially inward flow is produced by the influence

of the low hub base pressures and the turning of the flow to fill
the void in the hub area.

Fan exit swirl angles decrease by about five degrees with the hub

afterbody removed. This trend is caused by the high flow conditions

associated with the low exit static pressures.
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A small drop in rotor total pressure rise occurred whenthe after-
body was removed.

The overall operating characteristics of the test fan configuration will
be comparedwith the predicted fan operating mapin one of the following
sections of this technical discussion.

Integration of Fan Total Thrust

The components of the fan total net thrust include the following:

Fan Stream Thrust

Turbine Residual Thrust

Base Drag of Fan-Turbine Splitter

Base Drag of Fan Hub

The performance data obtained during the acoustic tests of the clean fan,

Runs 16 and 17, were used to determine the breakdown of the total net thrust

into each of the components, as shown in Figure 1-35.

These components of the fan thrust were obtained by integration of the

measurements taken by the two exhaust traverse probes. The fan stream thrust,

as previously presented, is the result of an integration of both the momentum

and pressure-area terms within the fan exhaust flow. The hub and fan-turbine

splitter drags were calculated by integration of the static pressures over

the particular base areas. A direct measurement of the turbine residual

thrust was not obtained. This thrust component was estimated using the follow-

ing assumptions and the measured engine gas flow.

The turbine exit velocity was calculated based on estimated turbine

stator performance and fan horsepower requirement.

The pressure-area drag was estimated using a pressure halfway

between the fan-turbine splitter pressure and ambient pressure.

The summation of the thrust components is also shown in the figure.

For comparison, the cycle estimated thrust levels of the fan and turbine streams

are shown in Figure 1-36. A comparison df the measured overall and integrated

thrusts shows excellent agreement. The difference in the measured and estimated

total thrust, about 550 pounds, (2450N) at design mechanical speed, is primarily

due to the low hub base pressure levels.

Comparison of Fan Performance with Estimated Fan Map

Predicted performance of the LF336/E fan was developed using the estimated

fan map and an operating line established by a boundary condition of ambient

pressure at the exit plane of the fan. Figure 1-37 shows the estimated map and

the predicted fan operating line.
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During tests of the LF336/E fan, performancewasmeasuredalong only one
operating line as established by the actual fan exit static pressure profiles.
Themeasuredfan exit static pressure wasbelow ambient throughout the exit
plane, with the hub pressure muchbelow ambient. The presenceof a below
ambient pressure boundarycondition will establlsh the fan operating llne
at a higher than predicted flow. The test operating line, as established by
measurementstaken during Runs16 and 17, is shownon Figure I-$7. Appropriate
fan speedsused in the mappresentation are identified by the data points.
Comparisonof the test operating llne and the mapshowsexcellent agreementup
cqthe maximumcorrected test speedof 90 percent. At the 90 percent speed
point, the fan maybe operating slightly below objectives as indicated by the
small displacement of the data point from the predicted speedline. The
difference in the predicted and test operating llne can be attributed to the
low exit pressures.

This comparisonis the only verification of fan operation achieved during
these tests becauseof the elimination of the planned tests intended to explore
the extremes of the fan map. Basedon this comparison, there is no reason to
believe that there were any gross performance deficiencies in the fan aerodynamic
design.
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ACOUSTICTESTS

Following the aero-mechanical tests of the LF336/E fan, an acoustic test
programwas performed using the final fan configuration as modified by instal-
lation of the turbine exit stator row. Thepropulsion system included the
statorless fan, the J85 engine, and interconnect ducting as shownin Figure
1-19. The initial acoustic tests were conducted at the outdoor test facility
at the General Electric Flight Test Center (EFTC). After testing at General
Electric, the fan wasdelivered to NASAand additional tests were performed
at the outdoor test site at the AmesResearchCenter.

Acoustic Test Hardware

The test vehicle used during the acoustic test was the LF336/Esystem with
a NASA-furnishedsuppressor installed on the inlet of the J85 engine. The in-
let suppressor is identified in the photograph, Figure 1-25, showing the
acoustic test set-up.

During the testing at EFTCa massive fan inlet suppressor was installed
to suppress fan inlet radiated noise and to allow determination of exhaust
radiated statorless lift fan noise. Details of the design of the massive fan
inlet suppressor are given in Reference2. The fan inlet suppressor is
also shownin Figure 1-25. In addition to suppressing the inlet radiated fan
noise, the massive inlet suppressor provided a 90 degree directivity shift to
further reduce the levels at the microphonelocations. Note that the inlet
duct waswrappedwith a lead-vinyl blanket to reduce any structure-born trans-
mission of noise.

Test Sites

Edwards Fli_ht Test Center

The test program was conducted at an outdoor test facility designed and

constructed for testing full scale lift fans and engines. The site shown in

Figure 1-38 is located at the General Electric Edwards Fli_it Test Center at

Edwards Air Force Base, California and is in an area free of buildings and

obstructions. The area surrounding the acoustic test site consists of desert

sand and brush. Figure 1-38 is a photograph taken across the top of the control

room which extends only thirty inches (76.2 cm) above the ground. The photo-

graph shows the large bellmouth positioned in front of the LF336/E fan and

the J85 with its inlet suppressor removed.

The test stand is attached to four concrete columns which protruded above

the asphalt apron and the fan was mounted in the stand ten feet (3.05 m) above

the ground with the fan flow parallel to the ground. No portion of the test

stand was forward of the lift fan upper wing simulation surface which prevented

any turbulence being generated by test stand structures.
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A sketch of the microphonelocations at EFTCis shownin Figure 1-39. There
were seventeenmicrophoneslocated at l0 degree increments from 0 to i60 degrees
relative to the fan inlet on a 150 foot (45.7 m) arc. Sevennear field micro-
phoneswere located on a 20 foot (6.1 m) arc at angles of 90, ii0, 130, 150,
210, 230, and 250 degrees relative to the fan inlet. Thenear field mikes can
be seen in Figure 1-38. All microphoneswere in a horizontal plane through the
fan centerline.

NASAAmesOutdoor Test Site

Additional LF336/E fan testing was conducted at an outdoor test site

located at NASA, Ames Research Center. An aerial view of the test site is

presented in Figure 1-40. As the photograph shows, the acoustic path to a

given microphone was in some places asphalt and concrete and in others short

grass and asphalt. The microphone layout is sketched in Figure 1-41. Far

field microphones were on a 150 foot (45.7 m) arc in ten degree increments

from 0 to 160 degrees. Two arrangements of near field microphones were used,

both on a 20 foot (6.1 m) arc. The first, used for Runs I and 2, had the

microphones located at 20 degree increments from 30 to 150 degrees. The second

arrangement, for Run 3 and all successive runs, had the seven microphones

located at 90, ii0, 130, 150, 210, 230, and 250 degrees. This latter arrange-

ment duplicated the near field microphone locations used at Edwards Flight Test

Center, and in the NASA 40 by 80 foot (12.2 m x 24.4 m) wind tunnel.

Engine and fan centerline height at NASA Ames was 9 feet 8 inches

(2.95 m) and all microphones were located in a horizontal plane through

the fan centerline.

Sound Data Acquisition and Processing

Data Acquisition_ Edwards Fli_ht Test Center

All data acquisition for the near and far sound fields was made using

Bruel-Kjaer model 4133 microphone systems in conjunction with an AR200 tape

recorder operating at 60 inches per second (152 cm per second). Figurel-42

includes a schematic of the data acquisition system at EFTC, and a photograph

_f some of the equipment.

All far field microphones were oriented to point at the test vehicle and

had Bruel-Kjaer UA0237 windscreens installed on the microphone heads. The near

field microphones were oriented to point in the same direction as the J85 inlet

and used Bruel-KJaer model UA0052 nose cones.

The free field frequency response of each microphone head is derived from

a pressure response curve recorded automatically by the electro-static actuator

method traceable to the Bureau of Standards. The free field characteristics

for various angles of incidence for microphones with protecting grid, nose

cones, and windscreens are given by the microphone manufacturer. Individual

microphone head sensitivities are determined by the insertion of a Bruel-Kjaer
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pistonphone on the cartridge mountedto a standard microphonesystem. Both
the pistonphone and standard microphonesystem are traceable to the Bureau of
Standards.

Prior to initiation of testing, a frequency responseof each data channel
(minus microphonehead) was madeby the insertion of a Hewlett-Packard Pseudo-
RandomPink Noise Generator into each cathode follower and recorded on magnetic
tape.

Prior to and subsequent to each day's testing, an absolute calibration was
madeby the insertion of a pistonphone on each microphoneand recorded on tape.
Since the test site is 2300 feet (701 m) abovesea level, a barometric correctiom
wasmadeto the pistonphone output as provided by manufacturer's specifications.
Any microphonewhosevoltage output with the pistonphone applied was found to
deviate more than + 1.5 dB from the laboratory calibration was replaced.

_=
_=

Data Acquisition_ NASA Ames

Data acquisition at NASA Ames was similar to that at EFTC as the sketch

in Figure 1-43 shows, except that the tape recorder was a Honeywell Model 7600

operated at 30 inches per second (76 cm per second). The step amplifier,

tape recorder, monitor scope, and monitor voltmeter were all located in the

General Electric Mobile Sound Evaluation Unit. During test operations at both

test sites, sound was recorded continuously for a minimum of two minutes to

allow enough sample length for data processing.

Data Processin_ 1/3 Octave Bands

All 1/3 octave band data processing was performed at the General Electric

Edwards Flight Test Center facilities using a General Radio real time analyzer

in conjunction with a Honeywell 316 and SDS930 computer. Thirty-two second

averaging time was used for data processing with data for each angle sampled

from the same period of time for each data point.

Before data processing could be initiated, the total data acquisition and

reduction system frequency response characteristics had to be determined and

made available in the computer for final data processing. The first step in

this process was to analyze the pink noise calibration tapes for each data

channel, and determine the response characteristics for the total system as

referenced to 250 Hz (frequency of the pistonphone) at each 1/3 octave band.

Final one-third octave data processing was made by determining absolute sound

pressure levels for the 150 foot (45.7 m) arc and 200, 500 foot (61 m, 151 m)

sidelines corrected to standard day (59 ° F (15 ° C), 70% relative humidity)

conditions as per Reference 6, and for ground attenuation effects as per

Reference 7.
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Data Processin_ 20 Hz Narrowbands

All narrowband analyses were made at the General Electric Company facil-

ities using a Federal Scientific Ubiquitous Spectrum Analyzer and a 139B Digital

Averager. All data were processed using a 20 Hz bandwidth filter and an averag-

ing time of 12.8 seconds. No corrections for humidity or acquisition/processing

responses were included in the narrowband plots.

Results And Comparisons

_e test programs conducted at both General Electric and NASA provided

acoustic data for numerous configurations of the LF336/E statorless lift fan.

Typical fan modifications that were tested included:

Massive fan inlet suppression

Treated exit louvers

Serrated blade leading edges

_lese acoustic data, coupled with previous tests of conventional rotor-

stator LF336 fan configurations, provides the basis for evaluating the merits

of a rotor-only fan system. All succeeding 1/3 octave band SPL and PNL com-

parisons are made on a 200 foot (61 m) sideline _lile all 20 Hz narrowband

SPL's are compared at a 150 foot (45.7 m) arc.

Fan Noise Comparisons

In this section, acoustic levels of the LF336/E statorless fan from NASA

Ames Research Center testing are compared to LF336/A, LF336/B, LF336/C-I and

LF336/C-II fans (Reference I). Table I-VII lists the design parameters of

these fans of the LF336 family.

Comparisons of statorless and conventional quieted fan configurations

has shown that equal fan thrust can be achieved through proper selection of

fan pressure ratio. For equal thrust, the statorless fan will require a

larger fan diameter, at a lower pressure ratio, with minor increases in

overall installation diameter in exchange for the reduced thickness of the fan

relative to the more conventional design. This trade-off of fan diameter for

thickness is one of the merits of the statorless fan concept.

Comparisons will be made at equal tip speeds and equal absolute pressure

ratios. Comparisons of noise generation at equal tip speed is equivalent to

comparing fans having equal thrust but different pressure ratios. Comparison

at equal absolute pressure ratio implies similar fan loading characteristics

and equal thrust for the same diameter. Pressure ratio has been used as a

correlating parameter of aft radiated fan noise or rotor-stator noise while

equal tip speed comparisons have been associated with inlet radiated or

rotor alone noise. Comparisons will be made both ways; but in applications,

the statorless fan would be designed to operate at a lower pressure ratio
than conventional fans.
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Figure 1-44 comparesstatorless fan 1/3 octave bandBPFdirectivity patterns
to the LF336/Band LF336/C-X1fans at three fan speeds (no C-11 data available at
6000 RPM). Since all three fans are the samediameter, equal fan speed is equal
tip speed. At the forward angles, the statorless fan is lower than the other two
fans. In the aft quadrant, the statorless fan BPFlevels are consistently lower
than the LF336/Band at least as quiet as the LF336/C-11at the critical angles
of 110° to 130°. Theseangles are the most critical for sideline noise measure-
mentswith lift fans. NarrowbandBPFdirectivity patterns for the statorless and
LF336/B fans are comparedin Figure 1-45 at 6000RPMans showsimilar trends as
Figure 1-44.

PNLdirectlvity patterns are presented in Figure 1-46 and showthat the
statorless fan forward quadrant PNLsare quieter than the LF336/Band equal to
or slightly lower than the LF336/C-11. In the aft quadrant, statorless fan levels
are the sameor lower than LF336/Bbut l to 3 PNdBhigher than LF336/C-11. Since
the statorless fan is not significantly quieter than conventional rotor-stator
lift fans, this implies that the maximumeffect of spacing has been reached at two
chords. This is shownmoreclearly in Figure 1-47 where the reduction of perceived
noise level with increased spacing is shownat the 110 degree aft quadrant. For
spacings approaching two chords, only small noise reductions occur with increased
spacing. The noise level at the two-chord spacing can be considered to be rotor
alone noise, which is in excellent agreementwith the measuredLF336/Enoise levels.

The previous comparison of measured acoustic performance of statorless fans

and conventional rotor-stator configurations was based on equal fan speeds at

equal fan tip diameters. A difference in thrust levels exist by virtue of the

differences in design pressure ratio and the thrust loss due to residual swirl

in the exhaust of the statorless fan. Correction for this thrust difference

based on I0 log (F/F) presents a noise level adder of 2 dB to the statorless

fan levels.

Figure 1-48 compares the fan pressure ratio of the LF336/A (which was

assumed for the LF336/B and C) with the absolute pressure ratios developed

by the LF336/E statorless fan. The absolute pressure of the LF336/E fan is

based on the average total pressure at the fan exit measured in the direction

of the swirling flow.

Directivity patterns of the 1/3 octave band which contains the BPF are

compared in Figure 1-49 at equal absolute pressure ratios. In the forward

quadrant, the trends are the same as in the previous section with statorless

fan levels generally lower than LF336/B but equal to LF336/6-II. In the

critical aft angles between ii0 and 130 degrees, the statorless fan is gener-

ally the same as the LF336/C-II and lower than the LF336/B at the lower two

pressure ratios. At the higher pressure ratio, the statorless fan is 1 to 3

dB above the LF336/C-II. On a PNL directivity comparison, as shown in Figure

1-50, the statorless fan is the same as the I,F336/B at forward angles and

1 to 2 PNdB higher in the aft quadrant. Figure 1-51 compares the three LF336

lift fans as a function of absolute pressure ratio at four acoustic angles.

At 40 and 60 degrees, the LF336/E is consistently lower than LF336/B at all

pressure ratios but about 2 PNdB higher than the treated LF336/C-II configuration.

At II0 and 120 degrees, the LF336/B and LF336/E are almost identical at all

pressure ratios and both are 2 to 3 PNdB above the LF336/C-II levels.
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Oneither basis - equal tip speedor equal pressure ratio - the statorless
fan has noise levela comparableto the quietest conventional fan modified for
minimumnoise. Therefore, the statorless fan would seemto he a viable
candidate, from the acoustic point of view, for quiet lift fan applications.

Fan Exhaust Directivity Patterns

Knowledge of the split between inlet radiated noise and exhaust radiated

noise levels aids in analyzing the strength and directivity of the various fan

noise sources. To determine this split, an existing massive fan inlet suppressor

was installed on the statorless fan. In addition to suppressing fan inlet

radiated noise, the suppressor_ shown in Figure 1-25, provided a 90 degree

directivity shift to any fan inlet radiated noise. During previous tests,

Reference 2, the massive fan inlet suppressor effectively suppressed fan inlet

radiated noise and permitted measurement of exhaust radiated noise.

Fan PNL directivities are presented in Figure 1-52 with and without the

fan inlet suppressor at 6000, 5400, and 4800 revolutions per minute. The exhaust

radiated levels in the forward quadrant are 5 to 8 PNdB below the unsuppressed

levels. In Figure 1-53, the 40 and 60 degree microphone PNL's are compared as a

function of fan speed. At 40 degrees, the exhaust radiated noise levels are

6 to I0 PNdB lower than the unsuppressed levels at 6000 to 3000 revolutions

per minute. At 60 degrees, there is 5 to 6 PNdB difference over the speed range.

Looking at Figure 1-52, installing the inlet suppressor appeared to slightly

increase the PNL levels in the aft quadrant. Figure 1-53 shows the llO and 120

degree PNL's as a function of physical fan speed. At i!0 degrees, the inlet

suppressor has no effect; however, at 120 degrees there is an incease of 2

PNdB near 4700 revolutions per minute and very little effect at other speeds.

_lese slight changes are probably due to increased turbulence from the massive

fan inlet suppressor or velocity changes in the fan tip region when the inlet

duct was installed in tile inlet plane of the fan.

Figure 1-54 compares the directivity patterns of the 1/3 octave band which

contains the BPF at three fan speeds with and without the inlet suppressor.

At the 40 degree microphone the fan exhaust radiated levels are 6 to I0 dB

below the unsuppressed levels. In the aft quadrant at 5400 and 4800 revolutions

per minute, the exhaust radiated SPL's are higher than the total or unsuppressed

levels. However, Figure 1-55 compares the 20 Hz narrowband BPF directivity

patterns with and without the inlet suppressor and indicates that inlet radiated

BPF noise has been eliminated to 120 degrees at 6000 revolutions per minute.

At lower speeds, Figure 1-56 indicates that the 90 degree exhaust radiated BPF

SPL's are 1 to 3 dB higher at 5400 and 4800 revolutions per minute and these are

lower than the unsuppressed levels. At ii0 degrees the exhaust radiated levels

are lower at all speeds; however, at 120 degrees the exhaust radiated BPF

levels have increased 4 to 7 dB over the unsuppressed levels at speeds from
4000 to 5400 revolutions per minute.

1/3 octave band spectra are compared in Figure 1-57 at the 40 degree

microphone. At this microphone, fan inlet radiated noise is evident down to

500 Hz at all speeds. The 20 Hz narrowband spectra in Figure 1-58 show that
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fan broadbandsuppression is about the sameat all frequencies, At the 60
degree microphonein Figure 1-59, the 1/3 octave hand spectra again indicate
fan inlet radiated noise is present downto 50QHz, 20 Hz narrowhandsin
Figure 1-60 indicate that the fan broadbandsuppression is not as muchas at
the 40 degree microphone. Looking at the 20 Hz BPFdirectivity as a function
of fan speed, Figure 1-61 indicates that the fan exhaust radiated BPFSPLis
16 to 9 dB below the unsuppressedfan levels at the 40 degreemicrophone.
At the 60 degree microphone the exhaust radiated BPFSPLis 12 to 8 dB down
except for 3800 revolutions per minute. Whythis particular speeddoes not
agree trendwise with the other speeds is unknown.

Thesplit betweenexhaust radiated and inlet radiated noise levels can be
easily determined. To calculate inlet radiated levels, one only has to
logarithmically subtract the exhaust radiated levels from the unsuppressed
levels. This provides the capability of evaluating different exhaust and inlet
suppression requirements and determining the effect on the overall noise levels.

Treated Exit Louver Suppression

Acoustically treated exit louvers were installed and tested on the stator-

less fan during tests at NASA. The louver cascade is shown in Figure 1-62 and

was previously used in the LF336/C test program (Reference i). It consisted of

eight airfoils, each 0.58 inch (1.48 cm) thick with 7.9 inch (20.1 cm) chord.

The airfoils were treated on both sides with two degree-of-freedom resonators

and had acoustic design parameters L/H _ 1.3 and H/% _ 1.4. They were located

about 8 inches (20.3 cm) downstream of the rotor trailing edge. Reference i

determined that little appreciable acoustic energy was radiated from the open

ends of the louver cascade.

A comparison of the PNL directivity patterns with and without the treated

exit louvers is shown in Figure 1-63 at 6000, 5400, and 4800 revolutions per

minutes. Suppression of 2 to 4 PNdB was achieved at angles of" 80 to Ii0 degrees.

Figure 1-64 presents the directivity patterns of the 1/3 octave band which

contains the BPF. Again, suppression is evident from 80 to ii0 degrees at all

speeds. 1/3 octave band spectra at the ii0 degree microphone are compared in

Figure 1-65. Fan BPF and fan broadband suppression is evident for frequencies
at and above the BPF; however, there is an increase in noise in the 630 Hz to

2500 Hz bands and a decrease at frequencies below 250 Hz. Narrowbands of Ii0

degree microphone spectra at 6000 and 5400 revolutions per minute are shown in

Figure 1-66 and show broadband humps of noise near 1200 and 2100 Hz at 600
revolutions per minute. This increase in the midfrequency range is due to

wake scrubbing and interaction noise over the louvers. The flow out of the

statorless fan has swirl which would tend to increase this scrubbing noise.

In Reference i, it was shown that for the LF336/C fan at 95 percent fan

speed (5750 RPM), there was no suppression from the louvers; however, at

80 percent fan speed (4800 RPM), I to 2 PNdB suppression was realized. At that

time, it was observed at high power settings the Mach number of the flow over

the louvers was of the order of 0.7. High Hach numbers are known to reduce the

effectiveness of resonator treatment. At lower fan speeds, the Mach number was

lower; threfore, the treatment was more effective. At the highest fan speed of

the statorless fan (6000 RPM), the Mach number based on tlle above calculations
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is about 0.5 at which the treatment should be moreeffective.

Inlet Radiated Power Level Predictions

A theoretical analysis of the noise generated by inlet turbulence-rotor

interaction was conducted and a mathematical model developed to predict the

_nlet radiated sound power levels.

No inlet turbulence measurements have been made for the LF336/E statorless

fan. Thus it was necessary to estimate levels by scaling turbulence measure-

ments taken during testing of a fan with radius ratio and axial Mach number

that were similar to the LF336/E; however, this fan was an axial inflow design

while the LF336/E is a radial inflow design.

SPL levels were calculated at several radial locations from hub to tip and

integrated over the annulus area to obtain sound power level. A comparison of

the measured and predicted inlet radiated sound power levels is shown in Figure

I-i03. The measured inlet sound power levels were obtained by inteErating

measured far field SPL's from 0 to 90 degrees. In Figure 1-67, the measured

inlet power levels were obtained by integrating the measured faz field SPL's

from 0 to 90 degrees. In Figure 1-67, the measured and predicted level of the

1/3 octave band which contains the blade passing frequency are in good agreement,

but the location of the BPF is not consistently predicted by the theoretical

analysis. In an attempt to better place the BPF in the 1/3 octave band, the

eddy size was sy$tematically varied at various radial locations. In Figure 1-68,

the assumed eddy sizes were increased by a factor of ten at all radial locations,

at the outer two radial locations, and at the outer radial location. It

appears that increasing the eddy size at the outer one of two radial locations

causes the BPF to fall in the correct 1/3 octave band. The effect of increasing

the eddy size by factors of 5, i0, and 15 at the two outer radial locations is

shown in Figure 1-69. The best fit is provided with a factor of 15 increase;

however, the signal to broadband ratio obviously does not match the measured

levels. In Figure 1-70, the outer radial location eddy size was increased by

a factor of 5, i0, 15. Again, the best fit of the BPF occurs with the factor of

15 increase and the broadband levels do not agree.

The theoretical model used in these few comparisons give encouraging

results. There is a distinct need, however, for actual turbulence measure-

ments on the LF336/E fan to verify the results and to confirm or deny the

assumptions in the theoretical model. The model does seem sensitive to inlet

turbulence eddy sizes when placing the BPF in the correct 1/3 octave band.
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PART I! - SERRATED LEADING EDGE DEVELOPMENT

Investigations and studies by NASA and General Electric have identified

that significant noise reductions can be achieved through the use of serrated

leading edges of turbomachinery airfoils. As part of the statorless fan

program, a sub-program, was included to develop and test serrated leading

edges on this fan configuration. The development of the serration configura-

tion was accomplished by a series of cascade tests of various serrated airfoils

derived from the statorless fan blade geometry. The selected optimum

serration geometry was then incorporated into the statorless fan system and

a series of acoustic tests were performed for comparison of fan noise charac-

teristics both with and without serrations. This part of the report describes

the cascade development program and presents the results of the fan acoustic

tests.

SERRATED LEADING EDGE DEVELOPMENT

A two-dimensional cascade test program studied the effects of serrations

on the acoustic and aerodynamic performance of blade contours representative

of those employed in the LF336/E statorless lift fan. The test airfoils had a

two inch (5.08 cm) chord and blade shapes equivalent to the meanline plane of

the actual rotor blading. Two unserrated and six serrated blade configurations

were tested. The serration geometry covered a range of serration lengths be-

tween four and eight percent of the airfoil chord. Serration tooth spacing

ranged between 1.3 and 2.0 times the serration length. The test program in-

cluded a range of blade inlet Mach numbers and inlet air angles which encom-

passed the blade design flow conditions of .85 Mach number 57 degrees air angle.

During the test program, aerodynamic performance was obtained through measure-

ments of the cascade exit flow field. Acoustic performance was obtained by

measurement of the exhaust turbulence levels and through measurement of the

overall sound levels in the semi-reverberant exhaust section of the test

facility. Details of this test program are presented in Reference 7.

Test Cascades and Serrations

The purpose of the program was to develop a leading edge serration for the

LF336/E statorless fan. Accordingly, the airfoil section was scaled from the

LF336/E fan blade section and is shown in Figure II-I. The airfoil chord

selected for the cascades was 2.0 inches (5.08 cm) and thus the blade aspect

ratio was set at 2.0 based on the four inch (10.16 cm) wide test section.

Figure II-I also shows a sketch of the design procedure employed in develop-

ment of the leading edge extension. A summary of the airfoil geometry selected

for the cascade test program is given in Table II-I.

The test serration configurations were selected to cover a range of serra-

tion heights and spacings. Table II-II gives the significant dimensions of

the six serration configurations which were tested. Two unserrated cascades
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were also tested to establish baseline conditions and performance. One
unserrated configuration was a blade contour equivalent to the as-designed
airfoil and had a blade chord of 1.848 inches (4.696 cm). The secondunserrated
conflguration had a chord of 1.962 inches (4.983 cm) and thus was representa-
tive of airfoils modified by the leading edge extension but prior to serrating
the leading edges.

Each cascadeconfiguration consisted of 15 blades installed in parallel
plexiglass walls. The airfoil leading edgewas located one chord downstream
of the leading edgeof the cascadewalls.

Experimental Results

The total programincluded testing over a range of inlet flow conditions,
velocity and air angle, for a total of six serrated and two unserrated cascade
configurations. The range of flow Machnumberswas from about 0.75 to 0.97
and the range of inlet air angles wasvaried between51 and 60 degrees. The
aerodynamicdesign inlet flow condition for the blade section at the 50 percent
flow streamline is summarizedin Table II-III. Other significant performance
parameters are listed, such as blade loading and exit deviation angles. The
estimated inlet flow condition at the aerodynamicdesign speedis an inlet Mach
numberof 0.97 at an airflow angle of 57 degrees. This flow condition corre-
sponds to operation at the design speedor thrust levels. A secondoperating
condition which is of interest for fan systems employedin V/STOLaircraft is
the "Noise Rating" or "Nominal Rated" operating point. This operating point
is defined as 80 percent of design thrust, with the remaining 20 percent thrust
_nerementreserved for aircraft maneuveringcontrol forces. The noise genera-
tion characteristics of lift fan systems are usually evaluated at this partial
thrust level.

The inlet airflow condition at the "Noise Rating" point was estimated
using off-design cycle calculations and is an inlet Machnumberof 0.85 at the
design air angle of 57 degrees. Since this operating condition is of prime
interest for noise generation where the noise estimates are performed, the
major portion of the test programwasdirected towards an investigation of
performanceat these flow conditions. Only selected configurations were
employedin extended tests covering a wider range of flow velocities and inlet
air angles.

Aerodynamic Performance

The effects of serration geometry on blade aerodynamic performance were

evaluated based on test measurements taken at an inlet Mach number equivalent

to the "Noise Rating" point. At these inlet air conditions, aerodynamic

performance was obtained through measurement of the total pressure loss and

exit devlatlon angles. The effects of the serration geometry on these two

performance parameters are shown in Figure 11-2. The serration geometry _s

presented using the parameters of serration height, H, serration spacing, S,
and blade chord, C.
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These data show reductions in total pressure losses for all serratlon con-

figurations. In addition, the minimum losses occur at serration heights of five

to eight percent of the blade chord. The losses also appear to decrease as the

serration spacing, S, approaches the serration height, H. Lower blade deviation

angles were measured for all serration geometries, with no apparent influence

due to serration height-to-spacing ratio.

During the program, blade off-design performance was obtained for a range

of inlet Mach numbers and inlet air angles. Aerodynamic performance at these

off-design conditions for both serrated and unserrated configurations is shown

in Figure II-3. Serrated leading edges improved performance for both increased

inlet Mach numbers and flow angles less than or greater than the design inlet

flow angle of 57 degrees. This trend of improved off-design performance is a

significant test result. It appears that serrated leading edges exhibit the

desired performance characteristics of a very sharp leading edge airfoil without

the associated poor performance at off-design air angles. The desired sharp

leading edge characteristic is indicated as a very small increase in fan total

pressure loss coefficient with increasing inlet Mach number. The good off-design

performance is shown as a broader tolerance for inlet air angle excursions

without large increases in total pressure loss or exit air deviation angles.

In a compressor or fan design, this type of performance improvement would appear

as increases in off-design efficiency coupled with increases in stall margin.

For comparable performance, the improvements due to serrations could be utilized

to achieve increases in fan blade loading as manifested by lower tip speeds or
reduced blade areas.

Wake Turbulence Levels

In the previous discussion, the effects of serrations on aerodynamic per-

formance were evaluated using two serration dimensional parameters, (H/C) and

(H/S). A similar comparison of the measured exit turbulence levels is presented

in Figure II-4. Turbulence levels, both axial and normal, decrease as the

serration height (H) is increased. Serration heights of greater than six percent

of the blade chord yield the lowest turbulence levels. Effects of serration

spacing (H/S) are not as clearly identified as in the case of a similar comparison

of the aerodynamic performance.

The effects of serrations on blade off-deslgn wake turbulence levels are

shown in Figure II-5. Addition of serrations shows a reduction in turbulence

levels both with increasing Mach numbers and at incidence angles above and

below the design level. At low Mach numbers and at an inlet air angle equivalent

to zero degrees incidence (54 degrees), the effects of serrations on blade

turbulence levels appear to be negligible.

Acoustic Performance

Acoustic performance of the cascades was determined by noise measurements

in the discharge plenum chamber. Figure II-6 shows the noise with and without

serrations as a function of Mach number. All serration geometries yield noise

reductions throughout the Mach number range.
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An analysis of noise generated by a cascade and its relationship to the

wake turbulence was presented in Reference 8. The analysis predicted a

noise change proportional to 20 log u/U. Figure II-7 shows a comparison of

this theoretical reduction with results obtained during the cascade tests.

Reasonable agreement is obtained except for configurations SRI at 60 degrees

and SR5 at 57 degrees. Apparently, the measured noise change is due to re-

duced turbulence in the blade wake, thus better blade performance is indicative
of lower noise.

The effect of serration geometry on noise was consistent with results

presented previously for aerodynamic performance. Figure 11-8 is a plot of

noise versus H/C at constant values of H/S, which is comparable to Figure

11-4. At constant serration height (H/C), larger spacing, and constant

geometry (H/S), the larger tooth height and spacing produce less noise. The

conclusion from Figures II-4 and II-8 is that serrations improve performance
and lower losses which results in lower noise.

SERRATED ROTOR ACOUSTIC TESTS

The cascade tests, as defined previously, led to the selection of serration

configuration SR6, as defined in Table II-II. This serration configuration was

incorporated in the rotor blading of the LF336/E for acoustic tests to determine

nolse reductions compared to a clean unserrated rotor. The tests of the fan

were conducted at the NASA Ames Research Center test site, and included con-

figurations with and without a circular inlet vane installed. During the follow-

ing discussion, the effects of serrated leading edges on fan noise generation

will be based on acoustic data obtained for the fan without the circular vane

installed.

Serrations reduced the perceived noise level (PNL) by 2 to 4 PNdB primarily

from 80 to i00 degrees (relative to the fan inlet on a 200 foot (61 m) sideline)

as shown in Figure 11-9 at 6000, 5300 and 4800 revolutions per minute. At

forward angles, however, the use of PNL is somewhat deceiving since it weights

the i/3 octave band which contains the BPF most heavily and in the forward

angles the BPF-not fan broadband noise-controls the spectra. Figure II-IO

presents a comparison of serrated and unserrated sound power levels (re 10 -13

watts) at three fan speeds. Serrations clearly reduced fan broadband power

levels from 630 Hz to the BPF by i to 2 dB. Above the band containing the

BPF, there was little or no reduction due to serrations. The region of the

spectrum around 315 Hz is influenced by the ground null; however, lower

frequencles down to i00 Hz show lower sound power levels with the serrated

rotor_ There are two possible reasons for the reduction at these low frequencies.

One is that the fan is performing differently with the serrated rotor and jet

velocities are reduced thus lowering these low frequency levels. The second

possibility is that these low frequencies observed in the forward quadrant,

which are usually associated with jet noise, are in fact fan broadband noise

which has been reduced by serrations. Figure II-11 indicates that the second

possibility is correct. Here the serrated and unserrated 160 tIz sound pressure

levels (SPLs) at three fan speeds are compared at acoustic angles on a 200

foot (61 m) sideline. The SPLs from 30 to 100 degrees have been reduced
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2 to 5 dB by serrations. However, aft angles show little change with serrations.

Apparently, the low frequency noise observed in the forward quadrant is caused

by fan rather than jet noise turbulence. Furthermore, serrations reduce this

low frequency noise.

At higher fan broadband levels, e.g., at 1600 Hz in Figure II-12, the

effect of serrations can be seen at angles of 30 degrees rearward at 4800,

5300, and 6000 revolutions per minute. For some reason, which is not clear at

this time, the ii0 degree level was not reduced by serrations, The reductions

range from 2 to 4 dB. Similar results are observed for the 2500 Hz SPL's in

Figure II-13. Again the ii0 degree SPL's with serrations are the same as the

unserrated levels.

Serrated and unserrated SPL's of the 1/3 octave bands which contain the

BPF for 6000, 5300, and 4800 revolutions per minute are compared in Figure

11-14. At forward angles up to 80 degrees the SPL's at the two lower fan

speeds show no effect due to serrations and the 6000 rpm SPL's only show about

a 1 dB drop due to serrations. The forward SPL's which contain the BPF are

controlled by the BPF and the BPF is not affected by serrations or are slightly

increased as the narrowband SPL's in Figure II-15 indicate. Note that Figure

II-19 compares both 1/3 octave band BPF and 20 Hz narrowband BPF on a 150 foot

(45.7 m) arc. Typical 120 Hz narrowband spectra are shown in Figure II-20 for

60 degrees and 120 degrees. The aft spectra BPF is only 4 dB above the

broadband noise which accounts for the difference between the aft quadrant 1/3

octave band BPF and 20 Hz BPF levels in Figure If-16.

At frequencies above the BPF, serrations do not achieve a reduction except

at 80, 90, and I00 degrees. Figure II-17 is a typical frequency, 8000 Hz, at

three fan speeds.

These comparisons verify that serrating the leading edge of the rotor

produced fan broadband noise reductions of 2 to 5 dB. The appearance of these

reductions at low frequencies indicates that the fan broadband noise may extend

to frequencies as low as I00 Hz.

m
m
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PART III - PERFORMANCE IMPROVEMENT

HUB BASE PRESSURE INVESTIGATIONS

During tests of the LF336/E statorless fan, a large thrust deficiency was

observed. Through measurements of the fan exit flow and pressure profiles,

the low thrust was traced to excessively low fan exit static pressures, partlc-

ularily in the hub base area. The original estimates of base pressure, as

included in the fan design and performance estimates, were based on experience

derived during tests of fans with axial exhaust flow. With swirling flow, as

in a statorless fan, this experience was no longer applicable and a new method

of estimating hub base pressures was required. A program was inltated to

develop the required background through a combined theoretical and experimental

investigation of base pressures for cases with and without swirling flow. This

section of the report summarizes the significant results of this "study, including

a statoriess fan aerodynamic redesign based on the experimental results. Details
of this investigation may be found in Reference 9.

Theoretical Analysis

When flow exits from an annular nozzle with a blunt centerbody the

pressure over the aft face of the centerbody may be considerably different from

the ambient pressure into which the Jet is exhausting. This base pressure may

have a significant effect on the flow and thrust coefficients of the nozzle.

If the Jet exits axially without swirl, base pressure coefficients based on

average Jet velocity head are on the order of -.i0 to -.15. However, if the

jet has radial or circumferential velocity components it is found that the

base pressure coefficients may vary widely from these values. This analysis

was undertaken to develop an analytical model which could be used to predict

base pressure, thrust, and flow coefficients for annular nozzles with non-axlal

flow. The analysis also considers the effects of radial distribution of swirl,
nozzle radius ratio and nozzle pressure ratio.

Conceptually, the reduction of the base pressure below ambient pressure

can be thought of as being the result of three separate factors. First, in

a jet with axial exit velocity, the shear forces between the high velocity

main stream flow and the relatively stagnant air mass composing the centerbody

wake must be balanced by an equal and opposite force acting across the base

area. This component of base pressure is a true drag force and results in
a thrust loss.

Second, there is a component of base pressure due to the meridonal

curvature of the flow streamlines in the vicinity of the nozzle exit. This

streamline curvature causes a radlal'static pressure gradient in the flow

and thus causes the base pressure to differ from ambient pressure, If the

flow exits axially the streamline curvatures are small but if the flow is

angled radially inward or outward the streamline curvatures are much larger

and the effect on the base pressure may be significant. This component of

the base pressure has no effect on the nozzle velocity coefficient since it
is essentially a potential flow phenomonen.
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Third, if the jet has a swirl velocity component,a radial pressure
gradient must exist in the flow stream to support the centrifugal forces
generated by the swirl. This then results in a base pressure lower than
the ambient pressure. Furthermore, the swirling _et induces a rotational
motion to the centerbody wakewhich in turn causesa radial pressure
gradient across the base area and a further reduction in averagebase
pressure. This componentof base pressure can cause a large loss in
nozzle thrust coefficient and represents the energy lost in the swirl velocity
component.

It is evident that the above three effects are closely interrelated so
that they cannot be treated independently in a mathematical analysis
of the problem, however it is conceptually enlightening to recognize
the separate factors affecting the base pressure.

Assumption and Boundary Conditions

Figure III-I shows the general scheme of the flow model assumed in

this analysis. The flow downstream of the nozzle exit is divided into two

distinct regions, the main stream flow and the centerbody wake. The dividing

llne between these two regions is the hub streamline of the main flow. It is

recognized that there is actually flow interchange across this boundary but

it can be taken as the line across which the time averaged flow is zero. Thus

the total time averaged mass of air within the wake region is constant. It

is assumed that static pressures in the two regions are equal along this stream-

line and that shear forces between the two regions may exist along this line.

The outer streamline of the main flow is assumed to be an isobaric surface

where the static pressure equals the ambient pressure into which the jet is

exhausting. Shear stresses and mixing along this outer boundary are assumed

to have negligible effect on the base pressure of the centerbody.

At Station i, the upstream boundary of the main flow, it is assumed that

the radial distributions of total pressure, total temperature, and angular

momentum can be specified. At Station 2, the downstream boundary of the main

flow, it is assumed that the slope and curvature of all streamlines are lzero.

Total temperature and swirl angle distributions at this station are derived

from the upstream values assuming that energy and angular momentum are cDn-

served along each streamline. The total pressure distribution at Station 2 is

derived from the upstream total pressure and the assumption that the loss due

to the shear stress between the main flow and wake is distributed uniformly

across the main stream.

Other assumptions are that the flow is steady, axisymmetric and has the

properties of an ideal gas. At the inlet station, it is assumed that the radial

distributions of angular momentum can be sufficiently well represented as a

linear relationship to the stream function. Details of the flowfield calcu-

lations are given in Reference 9.

m
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Experimental Program

The experimental phaseof the hub base pressure study was intended to
verify the theoretical analysis through test of scale annular Jet modelswith
and without swirling flow. Thesescale model tests were conducted to evaluate
several empirical parameters required in the theoretical analysis, and to
provide a methodof flow observations of the jet wake zone downstreamof thehub base.

A total of ii modelswere tested with different hub radius ratios and
radial flow angles. Table III-I contains data defining the exit geometry of

each model. The test configuration is identified by the model number plus a

prefix of either A or S to identify axial or swirling fiow, respectively.

Test Results

The results of the hub base pressure test may be separated into two major
categories:

• Tests with axial flow, simulating a rotor stator fan exit

• Tests with swirling flow, simulating a statorless fan exit

In addition, several miscellaneous tests were performed to investigate

effects of variable pressure ratio, blockage for simulation of exit louvers
and skewed swirl distributions.

Flow surveys were taken for each model at several downstream locations.

Figure III-2 presents typical pressure and angle distributions for test model

6 that had a radius ratio of 0.55 with zero degrees of radial flow angle.

Flow profiles are presented for the plane directly downstream of the nozzle

exit and for the most downstream test location. The profiles for the axial

case, as shown in Figure III-2, are typical of flow in the wake of the base.

Close to the exit plane, the base pressure is slightly below ambient pressure

and the static pressures in the main flow average to a level near ambient

pressure. At the far downstream location, the flow has filled the base wake,

with stream static pressures at or slightly above the ambient levels.

The flow surveys for the model with swirling flow are also shown in Figure

III-2. For this condition, the static pressure profiles exhibit large pressure

gradients. Immediately downstream of the exit plane, the pressure level

decreases steadily from tip to hub, achieving pressure coefficients of about

-0.8 near the hub. The swirl distribution in the main flow is nearly a

constant 35 degrees as established by the swirl vanes. In the wake of the hub,

the flow is purely tangential as indicated by the 90 degree swirl angle. As

the flow proceeds downstream, the pressure gradients smooth out with reverse

flow in the wake region. The reverse flow is indicated by swirl angles that
approach 180 degrees at the wake centerline.

Based on the flow surveys at several downstream locations behind each

model, the locations of the flow streamlines were determined. Figure III-3
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shows the flow field with axial flow and with swirl. Without swirling flow,

the base closes on itself some distance downstream of the exit plane. For the

case with swirl, the hub wake does not appear to converge but approaches some

limiting size. This test result agrees with the wake mixing assumptions

included in the theroetical model. The mixing region of the Jet outer boundary

is also indentified for each model test. This zone represents the boundaries

of the outer flow of the Jet and the location of the streamline entraining the

measured total model flow. Figure III-4 and III-5 present graphically the

level of flow entrained in this mixing region as a function of position downstream

of the exit plane. With swirl, the level of flow entrainment is about 30 to

50 percent greater than for axial flow.

The integrated mass flow weighted total pressure was determined from the

profile data, and in turn used to define the total pressure (mixing) loss

coefficients. These data are shown in Figure III-6 and III-7, and again show

higher losses for the case wi_h swirling flow. These higher rates of loss and

flow entrainment can be expected for a swirling Jet when the absolute total

pressure levels of both cases are equal. With swirl, the axial velocity com-

ponents are lower, and thus the mixing process would occur in a shorter axial

distance.

The flow profiles, as measured at the model exit plane, were used as the

basis for determining overall performance for each configuration. The measure

flow data were used to determine overall thrust coefficient, flow coefficient

and average hub base pressure variation with model geometry and swirl levels.

These overall performance parameters are shown in Figures III-8 and III-9.

A comparison of the theoretical predictions and the test data is shown in

Figures III-lO through III-12 and shows good agreement. Similar comparisons

of the axial flow conditions were equally as encouraging. Details of the pro-

cedures used in evaluation of the constants and comparisons with additional

test results are given in Reference 9.

STATORLESS FAN AERODYNAMIC REDESIGN

An analytical model has been developed to describe the flow field of

annular jets with blunt bases. Application of this theory for the case with

swirling flow is representative of the exit of a statorless fan rotor system.

The empirical constants for the analytical model were derived during model

tests both with and without swirling flow using turning vanes to inject swirl

in the exhaust flow. This arrangement was equivalent to exit from a stator

blade row where the level of swirl is a fixed parameter independent of the

levels of stream total pressure. For a rotor case, as occurs in a statorless

fan, the levels of swirl are related to the rotor pressure ratio and the

rotational tip speed. For this reason, one of the constants, C 2, must include

corrections to reflect these variations of swirl levels. For the test models,

the constant C 2 was determined to be 0.48 when the level of hub swirl was 60

percent of the meridinal velocity at a 0.5 radius ratio. Using this test
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point as a base and estimated variations with swirl level, the characteristics
shown in Figure 111-13 were selected for analysis of statorless fan systems. The

remaining empirical constants, FF, CpL and C9, were assumed to be the same for

either a rotor or a stator configuration. The friction factor, FF, was assumed

to be 0.04. The values of CpL and C 9 are also given in Figure III-13.

Application of Base Pressure Analysis to Designs

A parametric study of the performance of statorless fans was accomplished

using the mathematic model of the exhaust flow. The significant fan design

parameters considered during the study were fan pressure ratio, exit hub

radius ratio and rotor radial pressure rise distributions. Throughtout the

studies, the fan tip speed was set at 1125 ft/sec (343m/sec) which is typical

for an advanced technology rotor design. High tip speeds are desirable for

statorless fans since they require lower swirl levels at a given rotor pressure

rise. This relationship of fan exit swirl and pressure ratio for the design

tip speed condition is shown in Figure 111-13.

Fan performance figures of merit are thrust, flow and power conversion

efficiency. The variation of these figures of merit with fan design conditions

are shown in Figures IIl-14 through 111-16. Each performance parameter shows

improvements as the hub radius ratio is decreased, with rotor exit swirl or

loading distributions producing only minor changes in performance. A typical

minimum hub exit radius ratio would be 0.4 as established by the mechanical

design ability of inserting the blades in the hub disk. Selecting designs

yielding maximum thrust/area at a 0.4 radius ratio, the effect of exit swirl

distributions on performance is as shown in Figure 111-17. The fan pressure

ratio variation with swirl distribution is shown for the rotor tip and for

the average of the complete rotor. The effect of increased skewness of the

swirl distribution is to increase the difference between the tip and stage

average pressure levels. For minimum skewness, consistent with maximum per-

formance, a design condition was selected for a 30 percent distribution where

the average pressure ratio is 1.275.

Comparison of LF336/E and Selected Design

The original LF336/E statorless fan was optimized and designed without

considering the low hub base pressures as observed during the demonstration

testing. Application of conventional rotor design techniques forced the

LF336/E rotor design to employ relatively high rotor hub radius ratios for

acceptable hub loading. This large hub size, coupled with the low hub base

pressures, showed thrust deficiencies of about 20 to 25 percent of design

levels. When the low hub base pressures are considered during fan design,

the hub loading criteria is no longer the design limit. Mechanical design

considerations become the dominant criteria in establishing the fan radius
ratio.
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The theory developed during this analysis was used to estimate fan

performance for the original LF336/E statorless fan design and the proposed

modified design utilizing a low hub radius ratio. Figure 111-18 compares the

flowpath of the two fan designs and points out the large reduction in hub

radius. A comparison of estimated performance for the original and redesigned

statorless fan configurations is given in Table IIl-II. In addition, fan per-

formance as determined during the LF336/E demonstration tests is also tabulated.

The first column of tabulated data presents performance as estimated during

the original LF336/E fan design effort. This performance reflects estimates

using base pressure levels consistent with previous lift fan experience and,

therefore, does not include the effects of the low hub base pressures and

therefore represent the objectives established during the initial design studies.

The mathematical model was used to estimate performance of the original

statorless fan configuration. A comparison of the results shows the

ability of this theory to estimate statorless fan performance. The theory

predicts fan thrust and flow levels about 9 percent above the actual test

data. This difference may be due to effects of seal leakage, not

included in the theoretical treatment, and a deficiency in fan bladlng per-

formance because the test fan rotor was not designed for operation with the

extremely low exit pressures and attendent high hub flow conditions.

The estimated performance for the modified fan shows significant improve-

_ents over both the objective and measured performance of the LF336/E fan.

This large improvement is achieved primarily through reductions of the hub

radius that are possible because of the low hub base pressures. An evaluation

of the blade loading for the proposed fan design shows low blade D-Factors

and pressure rise coefficients throughout the inner flowpath. Figure IIl-19

presents the spanwise variation of blade loading for a configuration with a tip

solidity of 1.3 and a hub solidity of 2.3. These data show that the hub load-

ing is indeed very low, in fact, negative, with tip loadlngs that may be

slightly high for an acceptable design. An Increase of blade tip solidity or

speed would reduce the loadings to acceptable levels.

A comparison of the new statorless fan design with the LF336/A, a built

and tested fan, identifies the aerodynamic trades required for removal of the

exit stator row. The proposed statorless fan design utilizes a higher tip

speed than the LF336/A fan. Statorless fans desire higher tip speeds while

the LF336/A speed was established through optimization of the turbine using a

J85 gas generator. This difference in the tip speed accounts for the increased

exit radius ratio of the conventional fan.

The thrust per unit area and the power conversion parameters are the two

prime figures of merit of a fan system. The thrust per unit area for the

revised statorless design approaches the levels for a conventional design.

This high thrust is produced by the high flow per unit area. The thrust

efficiency of a statorless fan design is inherently low because of the thrust

loss in the residual swirl. This loss appears as the 20 percent deficiency of

the statorless fan design.
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CONCLUSIONS

A 36 inch (0.914 m) diameter statorless fan was designed and fabricated
to obtain aerodynamicand acoustic performanceof a rotor only single stage
turbotlp fan. Early tests of the fan system indicated a large performance
deficiency associated with lower-than-anticipated hub base pressures. Per-
formanceand acoustic tests were conducted for the unmodified fan configuration
at both General Electric and NASAAmesResearchCenter. Acoustic performance
was obtained both with andwithout leading edge rotor serrations.

Theprogramwasextended to include a detailed investigation, theoretical
and experimental, of the identified low hub base pressure of statorless fans.
The results of this study were utilized in the definition of a redesigned stator-
less fan configuration.

I)

The conclusions that were derived from these programs are as follows:

Statorless turbotip lift fans develop low base pressures that can

produce large thrust deficiencies if not adequately considered

during the aerodynamic design of the fan. Through proper application

of design techniques that do consider the low hub base pressure, it

is possible to design an attractive statorless fan system. For the

statorless fan, hub aerodynamic loading is not a limiting criteria

as is the normal condition for turbotip fan configurations. Instead,

the hub of a statorless fan is established only by mechanical con-
siderations.

2)

3)

Comparison of acoustic performance of statorless and conventional

rotor-stator fan configurations were made on both equivalent tip

speed and absolute pressure ratio basic. On either basis, the

statorless fan has noise levels comparable to the quietest conven-

tional fan modified for minimum noise, including rotor stator spacing

and treatment similar to the LF336/CII fan configuration.

Cascade tests of serrated bladlng indicated that:

Serration of the leading edges of a typical rotor airfoil design

produced improvements in aerodynamic performance, reductions in

wake turbulence levels and reductions in downstream noise levels.

The performance improvements, associated with the serrated leading

edges, were largest during off-deslgn operation of the airfoils and

at high inlet Mach numbers approaching sonic speeds. Only small

gains were observed when the inlet flow angle established zero

incidence at flow Mach numbers below about 0.80. In a fan or

compressor this type of performance improvement would appear as

an increase in off-deslgn efficiency coupled with increased stall

margin.

4) Comparison of statorless fan acoustic characteristics with and without

rotor leading edge serrations indicated that:
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6)

,

Serrations lowered fan broadband noise primarily at 80, 90, and

100 degrees at all speeds.

Pure tone reductions were not obtained with serratlons.

Reduction in fan broadband noise and not tones is consistent with

the rotor-alone analysis which indicated that serrations primarily

effect fluctuating pressure on the rotor and thus broadband noise

generation.

Low frequency SPL's down to i00 Hz were reduced with serrations

which may indicate that fan broadband noise occurs at these fre-

quencies.

The analytical and experimental investigation of hub base pressures, in

the presence of swirling flow, developed a method for reasonable pre-
diction of hub base pressures and overall flow parameters. The accuracy

of the theoretical model was limited by the range of test variables used

in evaluating the empirical constants.

Application of the theory developed for prediction of base pressures to
the exhaust conditions of statorless fans verified the experimental

results obtained during the LF336/E fan tests. Application of this

theory to redesigned fan systems identified an encouraging configuration

with performance levels higher than previous statorless fan objectives

that also approach those of a conventional rotor-stator fan system.

m_
=

M

_aB
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A

BPF

C

CPS

CPT

C F

Cp

Cp

c;

CpL

Cp1

Cp2

CT

CV

C
u

C2

C9

NOMENCLATURE

Definition

Area

Blade passing frequency

Blade chord

Static pressure coefficient,

(Ps - P0 )/(PT1 - PO )

Total pressure coefficient,

(PT - P0 )/(PTI - P0 )

Nozzle flow coefficient,

w/wi

Specific heat at constant pressure

Static pressure rise coefficient,

(Ps2 - PSI)/(PTR - PSI )

Static pressure rise coefficient,

[(Ps2/PsI )Y-I - 1]/(TTR/TsI - i)

Empirical constant used in base

pressure analyses

Hub base pressure coefficient at outer

radius, (PBI - PO)/(PTI - PO )

Average hub base pressure coefficient,

(PB - PO )/(PTI - Po )

Nozzle overall thrust coefficient,

(C F) (C V)

Nozzle velocity coefficient, V/V.
1

Tangential velocity

Empirical constant used in base

pressure analysis

Empirical constant used in base

pressure analysis

Units

ft 2 (m 2)

HZ (Hz)

in (cm)

BTU/Ib OR

(joule/g °K)

ft/sec (m/see)
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Symbol

DF T

D-F

Definition

Fan tip diameter

Blade loading diffusion factor

Unit s

in (meters)

F Fan thrust Ib (kN)

FPk

g

h

Fan total pressure ratio

Gravitational constant

Enthalpy

ft/sec 2 (mlsec 2)

BTU/sec

(Joule/sec)

Ah Rotor enthalpy rise, h2 - hI
BTU/sec

(jouh/sec)

Serratlon tooth height in (cm)

lip

J

Jo

K

L

M

N

N

NDp

NE

N F

P

PB

PBI

Pressure coefficient

(P - P0)/(p0 U_/2)

Mechanical equivalent of heat

Fan rotor polar moment of inertia

Ratio of turbine locked rotor to

design point torque

Serration teeth spacing

Mach number

Rotational speed

Rotor pressure rise profile factor

Fan design speed

Engine speed, I00 N/18,650

Fan speed, i00 N/6742

Fan rotor power

Area average hub base pressure

Pressure at outer radius of hub base

49

ft Ib/BTU

(Nm/Joule)

ib-ft-sec_

(kg-m-sec z)

in (cm)

ReM (_M)

ReM (RPM)

pct (pct)

pct (pct)

HP (kw)

ib/in 2 (kN/m 2)

Ib/in 2 (kN/m 2)



S__bol

PS

PSTD

PT

R

S

SPL

TDp

T
e

T
m

TSTD

T5. 4

u'/U

U

v'/U

V

V i

W

W T

W i

WI0

Z

Definition

Static pressure

Standard pressure,

14.696 ib/in 2 (101.32 kN/m 2)

Total pressure

Radius

Fan hub radius ratio

Serratlon root spacing

Sound pressure level_
re: 0.0002 dynes/cm

Turbine design point torque

Blade edge thickness

Blade maximum thickness

Standard day temperature,

518.69°R (288.2°K)

Fan turbine inlet temperature

Axial RMS turbulence intensity ratio

Rotor tangential speed

Normal RMS turbulence intensity ratio

Effective velocity

Ideal velocity based ou PTI and P0

Airflow

Nozzle exit total airflow based on

measuring section

Ideal flow based on PTI and P0

Fan inlet airflow

Axial distance from nozzle exit plane

Units

ib/in 2 (kN/m 2)

ib/in 2 (kN/m 2)

ib/In 2 (kN/m 2)

in (cm)

in (cm)

dB (dB)

Ib-ft (kN-m)

in (cm)

in (cm)

°R (°K)

°R (°K)

ft/sec (m/sec)

ft/sec (m/sec)

ib/sec (kg/sec)

ib/sec (kg/sec)

lb/sec (kg/sec)

lb/sec (kg/sec)

in (cm)
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BI

BIC

B2C

nT

Y

n

't

Description

Radial flow angle of nozzle exit

flowpath

Cascade inlet air angle

Rotor inlet air angle

Rotor leading edge blade angle

Rotor exit air angle

Rotor trailing edge blade angle

Turbine efficiency

Ratio of specific heats

Pressure correction, P/PsTD

Deviation angle,, B_C - B2C

Fan adiabatic efficiency

Temperature correction, T/TsT D

Density

Fan speed time constant

Loss coefficient, (P2 - PI)/(PTI - PSI )

Un its

deg (deg)

deg (deg)

deg (deg)

deg (deg)

deg (deg)

deg (deg)

ib sec 2 ft4

(kg sec 2 m4)

sec (sec)

Subscripts

0

i

2

H

R

T

Ambient

Upstream

Downstream

Hub

Relative to rotor system

Tip
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Table IlI. Turbine Inlet Gas Conditions For preliminary Studle_.

Turbine Inlet Airflow, ib/sec (k&/aec) 49.7 (22.5)

Turbine Inlet Total Pressure, psla (kN/m 2) 54.56 (376)

Turbine lalet Total Pressure, "R (°K) 2060 (1144)

lnlec 1%ml//cLr l_tio 0.0227

Table 1-21. Aerodynm_¢ ,Design Point Parameters.

Total Pressure Reels. PT2/PTI 1.25

Static Pressure Ratio, Psz/Po 1.012

Corrected Alr Flo_. Ib/eec (ks/set) 174.8 (79.2)

Efficiency. percent 73.7

Corrected Tip Speed. ft/sec (m/set) 1060 (323)

_d_ _aCiO 0 I 554

Specific Flow. lb/aec fC 2 (ks/set m2) 35.2 (172)

Rotor Tip P_elative Kach Number 1.13/.

Hub Work Coefficient 2Ah/U22
I. 11

.u=ber of Kledee 42

Aspect Ratio of Blade 2.4

P,otor TIp Solidity 1.127

Corrected RPH 6742

Average Exit Swirl Angle. Drag. 27.0

Corrected Fan SCreen Oaly Life, Ib (N) 3750 (16,680)

Table I-III. LF336/A Turbine Design Parar_eters.

Inlet Total Temperature. "R ('g)

IninC Tote1 Pressure. psle (kN/m 2)

Inlet Gas Pl_, lb/sec

Total to Static Pressure Ratio

Total to Total Pressure Ratio

Turbine Exit Static Presses. psia 0cN/m 2)

Turbine Exit Total Pressure. pelt (kN/m 2)

Speed. RIM

Design Pc_er. HP (kw)

F.xic Axial _uch Number

Turbine Ef f£clency

Pitch _eel Speed, fc/sec (m/lee)

Stage Velocity Ratio

Stage Work Functi(m

Turbine Tip Diameter, in. (m)

Turbine Hub Diameter, in. (m)

Bucket Length. in. (cm)

Annulus Area, in.2 (m2)

Advi_slon Arc, Degrees

Turbine Ex£C Flow, lb/sec (kg/sec)

Diffuser Exit Total Teeq_erature, "1_ (*K)

Diffuser Exit Total Pressure. psia (k_lm 2)

171z (950)

31.84 (219.5)

44.12 (2o.ol)

2.34

1.92

13.62 (93.9)

17.38 (119.8)

6048

3563 (2711)

0.551

0. 818

1076 (328)

0.584

0.645

42.93 Cl.090)

38.6_ (o.981)

2.15 (5.46)

275 (2.5.55)

36o

43.75 (19.8/,)

148o (822)

17.00 (117.2)



Table I-IV. F_t_ted LF336/E Performance.

Fan Speed. percent

Fan Tip Speed, fc/sec (a_eec)

Engine Speed. percent

Fan Net Thrust, lbs (N)

Fan Inlet Airflow, Ib/eec Ocg/sec)

Fan Pressure Ratio

Engine Discharge Airflow, Ib/sec (kg/aec)

Engine Discharge Pressure, 'psia (k_/m 2)

Engine D_-scharge Temperature, °R ,('K)

Design Point

I00

1060 (323.1)

97.5

4030 (18,010)

172 (78.0)

1.25

42.64 (19.34)

32.69 (225.4)

1637 (909)

Mech Limit

Speed

89.6

950 (2_.6)

9'4.0

3220 (14,320)

153 (69.4)

i. 196

39.30 (17.83)

28.9 (199.3)

1506 (837)

Table I-V. LF336/E Run Summary.

Max
Run Date Duration Fan RPM

1 10-6-72 :11 2875

2 10-7-72 :17 4069

3 10-7-72 : 15 4720

4 i0-7-72 :18 5300

5 10-Ii-72 :18 5201

6 10-12-72 : 23 5213

7 10-13-72 :24 5225

8 10-14-72 : 16 5200

:089 11-17-72

i0 11-18-72 :38 4220

n 12-11-77 :32 4856

12 12-16-72 :25 4800

13 1-9-73 :39 4803

14 1-9-73 :23 5416

15 i- i0- 73 :30 6008

16 1-11-73 :53 6034

17 1-11-73 :43 6019

18 1-18-73 1:22 6045

Tot_l Fan Time - 8:35

Con fiFuratlon

Unmodified

Unmodified

Unmodified

Dnmodlfied, Aborted Because of

Scroll Blanket Loosening

Turbine Throcclin 8 Ring

Turbine Throttlln E R/hE, Ambient

Bane Vent

Turbine Throttling Ring, Fan

Discharse Base Vemr

Turbine Throttlln R _Ing, Fan
Discharge base Vent, Fan v.'t.r-
Bellmouth

Turbine Shrouu and Throttling Ring

Removed, Fan Inlet Bellmouth,
Aborted Due tO L_sS of Stress Readout

Same as 9

Turbine Stre_ Srators. Fan Inlet
Bellmourh

Turbine Stream Stators. Hub After-

body, Fan Inlet Bellmouth

Turbine Stream Scacors, Fan Inlet

Bellmouth, Engine Inlet Suppressor

Same as 13

Same as 13

Turblne Stream Stators, NO Fan Inlet

BellDoutb, Aborted Because of Icing

and Heavy Fog

Same a.s 16

Turbine Stree_ Stators, Fan Inlet

Bellmouth and Fan Inlet SuppreesoT
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Table I-VI, Fan Performance Based on Exhaust Traverse Data,

(At • Corrected Fan Speed of 5000 RPM)

Fan Exhaust

ConflgurmClon Airflow
,lblsec) (kg/s'e'c)

.Unmodified Fan 111 59.4

Fan Absolute Fan Axial Fan Stream Fan Rotor

Pressure Ratio Pressure Ratio Thrust power

(I_ CHP) (k_)

1.153 I.I15 lSO0 8006 1050 799

1,157 l.lZ2 1770 7873 1020 776

1.145 1.110 1830 8140 980 746

1.141 1.110 1850 8229 980 746

1.142 1.112 1830 8140 980 746

1.147 1,117 1890 8407 980 746

Not Calculated 1.121 1780 7917 1010 76_

Hub Vent and Turbine

ThrottLing R£n 8 Inst_led 126 57.2

Hub Afcerbody and Turbine
StaCors Inst_11ed 129 58.5

Turbine Stators Installed

with Inlet Seilmouth 136 61.7

Clean Fan with Turbine

Stators Installed 138 62.6

Fan with Inlet Suppreasor
and Turbine Stacors InstA11ed

Fan Design FAti_tes

138 62.6

125 56.7

Table l-VI1. LF3_ Lift Fan ConfigureCiorw.

T_t

Fan Number Dat_._..ee

LF3)6/A I 1-69

LF336/8 i 2-69

LF336/C 1 12-69

LF336/C 11 6-70

LF336/_ 16,17 1-73

LF336/E I 3-73

Spacing Acoustic Acoustic Test

Vanes Chords SpZitter Treatment Location

45 .15 No No EFTC

45 2 No Ho £Frc

45 1 No No EFTC

90/1,eaned 2 Yes Ye a EFTC

0 . NO No EFTC

0 . NO No NASA (Ames')



Tablen-1. significant Puranetors For Ssrrate_ Cascade Teat Airfoils.

Chord 2.0 inches* (5.08 c8)

Aspect Ratio 2.0

Solidity 1.439

Blade Leadin8 Edge Ansla 54,9"

Blade Trallins Edsa An818 36.7*

_siin Incidence An81a +2.1"

Deaiin Deviation An81e 4.2"

Blade _xi:_un Thickneu 5.SX

Blade Leadin 8 [dis P.adlus 0.75Z

Slncludes 0.152 inch (0.366 cm) leadin 8 edge extension for serrattons

Table lI-n. sumary of SerratLon Gsometry.

rd to Rust of

SerratJonu . 1.846 in.
(4.6m8 cm)

Serration

m.1

SIl

S12

S13

814

St$

S_

12

1 u/C 8 L I

(*n) _u,p (in) (in) (,',-) _*.p _,) (i.)(_)./s _/u

0.116 0.295 .....

0.116 0.295 0.063 0.036 0.091 0.153 0.389 0.024 0.061 3.2 1.32

0.077 0.196 0.042 0.024 0.061 0.102 0.259 0.016 0.041 3.2 1.32

0.116 0.295 0.063 0.076 0.193 0.193 0.490 0.024 0.061 1.5 1.&6

0.152 0.386 0.083 0.100 0.254 0.253 0.643 0.031 0.079 1.5 1.&6

0.077 0.196 0.042 0.072 0.183 0.150 0.381 0.016 0.041 1.1 1.95

0.116 0.295 0.063 0.076 0.193 0.193 0.490 0.061 0.155 1.5 1.66
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Table XI-XII. Estimated Aerodynamic DesiGn Point

Operatin8 Cundit/ons For Serrsced Airfoil Sectlmls.

Inlet Hath Number 0,97

I_let Air Ansle 57"

Diffusion Factor 0.36

Static Pressure Rise Coefficient 0.33

Total Pressure Loss Coefficient 0.045

Blade Xncidence An81e +2.1 °

Blsde geviation Aasle 4.2"

Table ITX-Z. Base Pressure Hods1 Descriptions.

1

2

4

$

6

7

8

9

10

Ee*

Outer FXovpath

Radius Flov* Exit Diameter

lett_ _ In.(c=) ,,.

0.4 10 3.116 7.915

0.4 0 3.116 7.g15

0.4 -10 3.116 7,913

0.4 -20 3.116 7.915

0.55 10 3.620 0.687

0.55 0 3.&20 8.687

0.55 -10 3.420 8.687

0.55 -20 3.420 8.687

0.70 10 4.000 10.160

0.70 0 &.O00 10.160

0.638 3.710 8.052

Tnner Flo_ath
Exit Diameter

1.. (c:)

1.246 3.165

1.246 3.165

1.246 3.165

1.206 3.165

1.879 4.773

1.800 4.773

1,878 4.773

1,879 4,773

2.795 7.099

2.803 7.099

2.366 6.010

*_adislly out Desljnated Positive Ansle
**Scaled From L_336/[ Lift Fan

'i

|
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Table llI-lI. Comparison of Statorleee Fan kelp.

Original LF336/g

Lstimte8

Pressure RatLo 1.30

Tip Speed, re/tee (m/tee) 1060

Exit Radius Ratio 0.64

Ylow/ExLt Tip Area, Ib/eec ft 2 (kg/see n 2") 25.7

Thruat_Ex£t Tip Ares, lb/ft 20d4/m 21 473

Thrust/Power, Ib/_P (kM/kw) 1.15

Inlet Plow/Area, lb/eec ft 2 (ks/see 2 u 1) 35.2

LF336/E RevLeed LW)36/t Nma Yen LF336/A

Temte getiMtee Deeim

1.28 1.28 1.275 1.30

1060 1060 1125 950

0.64 0.64 0.40 0.55

24.26 26.6 40.8 33.86

340e 372 670 687

0.93 1.03 1.21

33.1 36.4 35.3 40.0

*Bued on Test Meaeursnents Corrected to Design Speed.
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Figure I-i LF336/A Fan Installed in Test Stand
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Fan Tip Speed (UT)

ft/sec m/see

U I 1150 351

U2 1050 320

U 3 950 2qO

0.8

0.7

0,6

0,7

0,6,

0._

0.4

\

0.5 0.6 0.7

bdt_ bt$o (P,)

_a

m

q:

150 --

100-

5(:--

150-

150 -

100

5C

j-

&
_n

3O

2O

10

UT " 3 U2 U 1

3°I J 1

2O

10

0 m

0.4

, L I I

0.$ 0.6 0.7

b, diue IrJcio (_)

1.3

1.2

1.1

1,0

0.9

0.8
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Figure 1-22 Fan Exhaust Showing Installation of

Base Vent and Turbine Throttling Ring
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Figure 1-62 Treated Exit Louver System
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